Public Software

Particle-Based Remote Visualization Applications: PBVR

PBVR is a visualization application based on Particle-Based Volume Rendering (PBVR). It is possible to visualize the calculation result data (volume data) of large-scale 3D simulations at high speed and 3D point cloud data acquired by laser measurements. You can choose between Client Server (CS) visualization, which visualizes volume data stored in remote storage, and In-Situ (IS), which visualizes simulations simultaneously and in the same environment. It also supports VR visualization with a head-mounted display.

Linear equations library for large sparse problems : PARCEL

The PARallel Computing ELements (PARCEL) library provides highly efficient parallel Krylov subspace solvers for modern massively parallel supercomputers, which are characterized by accelerated computation and less performance improvement in inter-node communication. The PARCEL is based on a hybrid parallel programing model with MPI+OpenMP, and supports the latest communication avoiding (CA) Krylov methods (the Chebyshev basis CACG method and the CA-GMRES method) in addition to the conventional Krylov subspace methods (the CG method, the BiCGstab method, and the GMRES method). The PARCEL supports two matrix formats (Compressed Row Storage (CRS) formant and Diagonal (DIA) format), two data types (Double precision and Quad precision), and can be called from programs written in C and Fortran.
※ The latest version is 1.2

Parallel Molecular Simulations : PIMD

This is a general software for ab initio molecular simulation, published an open source code written in MPI Fortran 90 . A variety of simulation methods is implemented, such as geometry optimization, normal mode analysis, phonon calculations, reaction path calculations (string method, path integral method), classical statistics (replica exchange), quantum statistics (path integral method) semiclassical dynamics (centroid and ring polymer molecular dynamics), nonadiabatic dynamics (mean field dynamics method, surface hopping method), free energy calculations (metadynamics, constrained molecular dynamics), etc. Each of them employs algorithms suited for massively parallel computers.
※ The latest version is 2.6.0