

Remote Visualization Tool PBVR (v.2.2)

User Guide

Nov. 2023

Japan Atomic Energy Agency

Center for Computational Science & e-Systems

 i

Version
number

Date
revised

Revised
chapter

Revised content

1.04 2015.3.31 - Release
1.05 2015.5.18 5.2 Parameter file function was added on Server
 5.4.2 File button was added on MainPanel
 5.4.6 Particle data output function was added
1.06a 2015.10.30 5.4.2 CROP panel was enabled for Mac
 5.4.3 Histogram function was added on Transfer

Function Editor
 5.4.5 Image file production function was updated

(file output directory, key frame animation)
1.07 2016.2.1 1.2 ICEX and VTK library were added to the

platform list
 2 The package was updated including serial

versions and PBVR Filter for VTK was added
 3.4 Data formats and parameter files were

extended including STL, PLOT3D, and VTK
 4.2 A new command line option “-pd” was added,

“-plimit” was modified, and “-sl” was removed
 5.2 A new command line option “-pd” was added,

“-plimit” was modified, “-sl” was removed, and
“-pin” was extended up to “-pin10”

 5.4.5 Particle panel was added
 6.4 An example of particle integration was added
1.071 2016.2.24 2 The package was updated. Compilation and

installation were changed.
 5.4.2 Transfer Function Editor, Particle Panel and

Animation Control Panel buttons were added
to Main Panel.

1.09 2017.3.2 4.2 New command line options “-Bs”, “-Be” and “-
Bd” were added.

 4.2.1 A usage of command line option “-vin” was
extended for multiple pfi files.

 4.2.2 Added about processing of distributed files.
 5.2 - Number of panels that opened when client

started was changed.
- Command line option “-vin” was extended

for multiple pfi files.

 ii

 5.4.2 - The following three buttons were added on
MainPanel. “Transfer Function Editor” ，
“Particle Panel”， and “Animation Control
Panel”.

- A checkbox “no-repeat sampling until
Transfer Functions be edited” was added on
MainPanel, and following three buttons were
added on MainPanel. “Legend Panel”,
“Coordinate Panel”, and “Viewer Control
Panel”.

- Display Particle Number was added.
 5.4.3 “Transfer Function Editor” was activated from

MainPanel, and close button was added.
 5.4.3.3 An action when NaN appears by the arithmetic

processing of function editor was added.
 5.4.5 “Particle panel” was activated from

MainPanel, and close button was added.
 5.4.6 “Animation Control Panel” was activated from

MainPanel, and close button was added.
 5.4.7 “Legend panel” was added.
 5.4.8 “Coordinate panel” was added.
 5.4.9 “Viewer Control panel” was added.
1.10 2017.3.15 3 “filter” was deleted. By Integration of “Filter

program” and “Server program”
 3 “IN/OUT files” were added.
 5.4.2 “Main Panel” was changed.
 5.4.3 Editor of “Transfer function” was changed.

“Function changes” and “GUI changes” by
TFS function expansion works

 4.2 Launching Method: Program Arguments:
“pin deletion”, “fin addition”
Changes by Integration of Filter program and
server program

 5.2 Launching Method: Program Arguments:
“pin deletion”, “fin addition”
Changes by Integration of filter program and
server program

 iii

 6.1 Launching Program: Program arguments: “pin
deletion”, “fin addition”
Changes by Integration of filter program and
server program

 6.5 Batch mode processing: Program arguments:
“pin deletion”, “fin addition”
Changes by Integration of filter program and
server program

1.11 3 Added description about Filtered version
program.

1.12 2020.6.01 - GUI of Client program was changed. Related
images and descriptions are updated.

1.13 2020.9.17 2.3 Instead of built-in KVS, new Client program
uses user installed KVS.

1.13.1 2020.10.16 5.3.1.1 Min/Max range in transfer function editor is
modified.

1.14 2020.11.05 1.3
2.1.3
2.3

Windows build procedure is updated using
2017 auxiliary environment on MSVC2019.

1.15 2021.5.1 - Added tool bar on rendering screen
1.17 2022.1.30 Added polygon composition function
1.171 2022.2.1 Added time series polygon composition

function
1.172 2022.5.23 Modified bug on rendering.

Added CPU rendering mode.
2.0 2021.01.01 Source codes of CS/IS-PBVR are integrated.

Pre-defined colormap updated
2.1 2023.03.10 Supported Apple silicon for Mac
2.2 2023.11.01 3 Supported textured polygon format and 3D

point cloud data.

 iv

Table of Contents

1 Introduction .. 7

1.1 Overview ... 7
1.2 System Requirements ... 9
1.3 Environment Setting .. 9

1.3.1 Usage for Qt ... 11

2 Installation .. 13

2.1 PBVR Filter ... 13
2.2 PBVR Server ... 14
2.3 PBVR Client .. 14

3 Build .. 15

3.1 Filter and Server Program ... 15
3.1.1 Linux and Mac .. 17
3.1.2 Windows ... 17
3.1.3 Filter for VTK data ... 19

3.2 Client Program .. 21
3.2.1 Installation of KVS library .. 21
3.2.2 Setting for Qt Creator .. 23
3.2.3 Deployment on Windows .. 25
3.2.4 CPU or GPU Renderer ... 26
3.2.5 Build of CGFormatExt4KVS .. 26
3.2.6 Dependent Library for VR ... 30
3.2.7 Build and Setting of Client Program .. 32
3.2.8 Deploy of Client Program on Windows ... 34
3.2.9 CPU/GPU Renderer ... 35

4 PBVR Filter ... 36

4.1 Data Decomposition Model ... 36
4.2 Launching PBVR Filter .. 38

4.2.1 Launching PBVR Filter with VTK Support .. 38
4.3 File Formats .. 39

4.3.1 Input Data Format ... 39
4.3.2 Endian ... 40
4.3.3 Filter Output Information File (PFI) ... 41
4.3.4 SPLIT File Format ... 44
4.3.5 Sub-volume Aggregate Format ... 48

 v

4.3.6 Step Aggregate Format ... 51
4.4 Parameter File .. 55

4.4.1 PLOT3D configuration file ... 58
4.5 MPI Parallel Processing .. 59
4.6 Execution in the Staging Environment of the K computer ... 60

4.6.1 Execution Shell Script and Parameter File ... 61
4.6.2 Input/Output Files and Directories .. 62

4.7 Unstructured Grid Data with Mixed Elements ... 62

5 PBVR Server ... 65

5.1 Launching PBVR Server ... 65
5.1.1 Launching PBVR Server in Batch Mode ... 67
5.1.2 Launching PBVR Server in Client-Server Mode ... 68

5.2 Connecting Client and Server via Socket Communication ... 68
5.2.1 Local Connection .. 68
5.2.2 Remote Connection .. 68
5.2.3 Testing SSH Port Forwarding Connection .. 70
5.2.4 Remote Connection from SSH Client ... 70

5.3 Visualization on Front-End Server .. 73

6 PBVR Client .. 74

6.1 Launching PBVR Client .. 74
6.2 Terminating PBVR ... 77

6.2.1 Standard Termination .. 77
6.2.2 Forced Termination ... 77

6.3 Using the PBVR Client GUI .. 78
6.3.1 Viewer ... 78
6.3.2 Tool Bar ... 80
6.3.3 Transfer Function Editor ... 86
6.3.4 Time panel .. 103
6.3.5 Particle and Polygon Composition .. 104
6.3.6 Image file production .. 108
6.3.7 Legend panel .. 113
6.3.8 Coordinate Panel .. 115
6.3.9 Viewer Control Panel .. 116

7 An Example with the Sample Dataset .. 117

7.1 Filtering Process ... 117
7.2 Starting PBVR ... 118
7.3 Designing Transfer Functions ... 119

7.3.1 Volume Rendering for a Single Variable ... 119

 vi

7.3.2 Multivariate Volume Rendering ... 120
7.3.3 Slicing Volumes .. 121
7.3.4 Synthesis of Transfer Functions ... 122

7.4 Integration of Particle Dataset ... 123
7.4.1 Saving Particle Datasets ... 123
7.4.2 Loading Particle Dataset ... 125

7.5 Saving Results .. 127
7.6 Batch Mode Example .. 127

 7

1 Introduction

1.1 Overview
This document is a user guide for Particle Based Volume Rendering (PBVR), a remote

visualization system developed at the Center for Computational Science & e-Systems in Japan
Atomic Energy Agency. PBVR provides high-speed remote visualization of large-scale volume
data by making use of a visualization library KVS (https://github.com/CCSEPBVR/KVS), and
by employing the particle-based rendering algorithm from the Koyamada Visualization
Laboratory in Kyoto University. PBVR consists of the following three components.
1) PBVR Filter

PBVR Filter is pre-processing program. This program decomposes the volume data into
sub-volumes for efficient parallel processing. This program is applicable to original
KVSML format.

2) PBVR Server
PBVR Server receives the sub-volumes and applies parallel visualization with PBVR’s
particle generation method. This program is applicable to original KVSML format.

3) PBVR Client
PBVR Client renders the particle data with Open GL using CPU/GPU.

In addition to the above components, a separate library KVSML Converter is available to
convert volume data in AVS, VTK, Ensight Gold, CGNS and other formats to KVSML format.

https://github.com/CCSEPBVR/KVS

 8

Figure 1.1-1 The system configuration of PBVR

PBVR Viewer implements a multivariate visualization function that can be used for various
simulations. In 3D data visualization, color and opacity are assigned to volume data, and these
are called the transfer function. In conventional visualization, a one-dimensional transfer
function that assigns color and opacity to a single physical value is used. PBVR Viewer
provides a transfer function editor that allows users to design multivariate transfer functions
using algebraic expressions. The transfer function editor allows users to edit 1D transfer
functions for each variable and to write multidimensional transfer functions using arbitrary
algebraic expressions with these variables. In this algebraic expression, basic operators,
elementary functions, and differential operators can be used.

In the visualization of 3D simulations, displaying polygon data of boundary conditions and
compositing it with calculation results is useful for understanding complex shapes. PBVR
Viewer can composit the particle-based volume rendering and the polygon data. In
conventional rendering methods, the visibility ordering based on alpha blending is the
bottleneck, making composite polygons and volumes difficult. In this application, however, the
Stochastic Rendering Compositor, which processes polygon rendering in the same framework
as particle-based rendering, enables efficient composite rendering of polygons and volumes.

Windows / Linux / Mac

SSH Tunnel PBVR
Server

PBVR
FilterPBVR

Client

t=0
Volume
Data

t=1
Volume
Data

t=n
Volume
Data

t=0
Sub-

volume0

t=0
Sub-

volume1

t=0 Sub-
volume0
Particle
Data

t=0 Sub-
volume0
VBO Data

Rendering
(OpenGL)

  	 

 

Client Machine

Server Machine

Socket
Master Node

Slave Nodes

 9

1.2 System Requirements
The remote visualization system PBVR is cross-platform program, and it works on Linux, Mac,
and Windows. And the filter and server programs are works on various supercomputers such
as FUGAKU and SGI8600. This program is built on C++ compiler together with OpenGL and
Qt libraries. The system is verified for the following platforms and compilers.
●Supercomputer

Platform CPU(architecture) Compiler
SGI8600 Intel Xeon Gold Intel
FUGAKU A64FX（ARM） Fujitsu

●PBVR Filter/Server/Client

Platform OS Compiler Library
Linux 64bit Kubuntu18.04 g++ 5.3.1 OpenGL, Qt6.4
Mac 64bit OSX12 (Apple silicon) clang 10.0.0 OpenGL, Qt6.4
Windows 64bit*3 Windows10 MSVC2019 OpenGL, Qt6.4

1.3 Environment Setting
Under the Windows environment, Qt and Microsoft Visual Studio (MSVC), which are

integrated development environments (IDEs), are used to build this program. The version
information required for that purpose is described below.

In Windows OS, Microsoft Visual Studio is the compiler for this application. Below shows the
steps for installation of Visual Studio 2018 Community.

The development tools are installed from Visual Studio Installer selecting “detail” ->
“change”.

In “Work load” tab
 desktop development in C++.
In “individual component” tab
Windows 10 SDK (10.0.1904.0)
MSVC v142 – VS2019 C++ x64/x86 build tool(latest)
CMake Visual C++ tool

 10

Figure 1.3-1 Component selection of C++ desktop development on Visual Studio Installer

Figure 1.3-2 Component selection for Windows 10 SDK on Visual Studio Installer

 11

Figure 1.3-3 Component selection for MSVC on Visual Studio Installer

Figure 1.3-4 Component selection for CMake on Visual Studio Installer

1.3.1 Usage for Qt
The Qt Creator IDE is provided by the installer which can be downloaded from the official Qt

page (https://www.qt.io/download-qt-installer). It automatically installs the Qt package for each

https://www.qt.io/download-qt-installer

 12

platform. There are online installer and offline installer in Qt installer, and Qt6.4 provided by
offline installer to build this program.

The following items must be selected from "Custom Installation" in the installer.
� Qt/Qt 6.2.4
� Qt/Developer and Design Tools/Qt Creator 10.0.1
� Qt/Developer and Design Tools/Qt Creator 10.0.1 CDB Debuffer Support
� Qt/Developer and Design Tools/CMake 3.24.2
� Qt/Developer and Design Tools/Ninja 1.10.2

Figure 1.3-5 Component selection in Qt installer

 13

2 Installation

PBVR's filter, server, and client programs run on Linux, Mac, and Windows and are available
in sequential and OpenMP parallelized binaries. The binaries for supercomputer SGI8600 and
Fugaku are also available, which are massively parallelized with MPI+OpenMP.

2.1 PBVR Filter
PBVR Filter is implemented in C and is shipped in two versions: (1) is a MPI+OpenMP version
for massively parallel computing and (2) an OpenMP version for thread parallel computing.
The following table lists the load module packages. Load modules supporting the VTK format
have suffix “_vtk”. The VTK library is needed to compile them. Choose the relevant load
modules and copy them to a directory that is specified in the PATH environment parameter.
When the copying operation finishes, the installation is complete.

Table 2.1-1 List of load modules for PBVR Filter.

Platform Parallelization Name of load module
Linux 64 bit Serial pbvr_filter_linux

OpenMP pbvr_filter_linux_omp
Mac 64 bit Serial pbvr_filter_mac

OpenMP pbvr_filter_mac_omp
Windows 64 bit Serial pbvr_filter_win

OpenMP pbvr_filter_omp_win
SGI8600 MPI+OpenMP pbvr_filter_s86_mpi_omp
FUGAKU MPI+OpenMP pbvr_filter_fugaku_mpi_omp

*1. The load modules for supercomputers are used only in computing nodes. Therefore, for
login nodes and post-processing nodes with Linux, use the load modules built for Linux.

 14

2.2 PBVR Server
PBVR Server is implemented in C++ and is shipped in three versions: (1) a serial processing
version, (2) an OpenMP version for thread parallel computing, and (3) an MPI+OpenMP
version for massively parallel computing. The following table lists the load module packages.
Choose the suitable load modules, and copy them to a directory that is specified in the PATH
environment parameter. When the copying finishes, the installation is complete.

Table 2.2-1 List of load modules for PBVR Server

Platform Parallelization Name of load module
Linux 64 bit Serial pbvr_server_linux

OpenMP pbvr_server_linux_omp
Mac 64 bit Serial pbvr_server_mac

OpenMP pbvr_server_mac_omp
Windows 64 bit Serial pbvr_server.exe

OpenMP pbvr_server_omp.exe
SGI8600*1 MPI+OpenMP pbvr_server_s86_mpi_omp
FUGAKU MPI+OpenMP pbvr_server_fugaku_mpi_omp

*1. The load modules for supercomputers are used only in computing nodes. Therefore, if
the login nodes and the post-processing nodes are on Linux servers, use the load
modules that are compiled for Linux.

2.3 PBVR Client
PBVR Client is implemented in C++ and uses Qt and OpenGL. The following table lists the
load modules stored in the client directory of the load module package. Choose the relevant
load modules, and copy them to a directory that is specified in the PATH environment
parameter.

Table2.3-1 List of load modules for PBVR Client

Platform Parallelization Name of load module
Linux 64 bit pthread pbvr_client_linux
Mac 64 bit *1 pthread pbvr_client _mac
Windows 64 bit *2 pthread pbvr_client.exe

*1. This load module is built for Intel-based Macs, and requires Rosetta to be installed on Macs
with M1 chips.
*2. In order to operate the Windows version load module, it is necessary to separately place
the GLUT dynamic library in a directory which has a path or in the same directory as the load
module. The GLUT dynamic library, glut32.dll, is available from the OpenGL site (3.1.2).

 15

3 Build

The filter and server programs are implemented in C++ and can be built by switching between
a sequential processing version, an OpenMP version for threaded parallel processing, and an
MPI+OpenMP version for massively parallel processing. The client program is implemented in
C++, Qt and OpenGL, and can be built by switching between CPU and GPU renderers using
a config file. The composition of polygon and particle data (6.3.5) is only possible with the GPU
renderer.

3.1 Filter and Server Program
The filter and the server program are compiled by pbvr.conf and Makefile under the PBVR/
directory in the source code package. pbvr.conf specifies the settings for making and compiling
PBVR Filter and PBVR Server. The source code package is as follows.

Table3.1-1 Components of source code package

Directory・File Detail

PBVR/

 KMATH/ Pseudorandom number generator library KMATH

 KVS/ Visualization library KVS (for Server program) *2

 glui/ Widget library for GUI

 Client/ OpenGL ver. PBVR Client programs

 FunctionParser/ Function editor library

 Common/ Common library for protocols, communications

 Filter/ PBVR Filter programs

 Server/ PBVR Server programs

 arch/ Compilation setting files

 pbvr.conf *1 Configuration setting file

 Makefile *1 Make file for directory PBVR/

*1. In Windows, the MSVC solution file pbvr.sln is used instead of pbvr.conf and Makefile.
*2. This KVS is not used for Client program. This is customized KVS for the particle generation
to compiled at parallel environment.

 16

The parameters in pbvr.conf (Table3.1-2) are used to specify which functions are installed.

Table3.1-2 List of parameters in pbvr.conf

parameter Value Detail
PBVR_MACHINE String Compilation setting files under arch/
PBVR_MAKE_CLIENT 0 or 1 Support of Open GL ver. PBVR Client
PBVR_MAKE_FILTER 0 or 1 Support of PBVR Filter
PBVR_MAKE_SERVER 0 or 1 Support of PBVR Server
PBVR_SUPPORT_KMATH 0 or 1 Support of KMATH (Server only) *1
PBVR_SUPPORT_VTK 0 or 1 Support of PBVR VTK (Filter only)

*1. In Windows and Mac, KMATH is unavailable, and TynyMT is used.

For PBVR_MACHINE, specify the compilation setting file in directory arch/ from those listed in
the following table.

Table3.1-3 List of compilation setting files

Filename Use
Makefile_machine_gcc Serial compilation using gcc
Makefile_machine_gcc_omp OpenMP compilation using gcc
Makefile_machine_gcc_mpi_omp MPI+OpenMP compilation using gcc
Makefile_machine_intel Serial compilation using intel
Makefile_machine_intel_omp OpenMP compilation using intel
Makefile_machine_intel_mpi_omp MPI+OpenMP compilation using intel

Makefile_machine_s86_mpi_omp
MPI+OpenMP compilation using JAEA’s supercomputer
For Intel compiler and mpt lib.

Makefile_machine_fugaku_clang FUGAKU clang mode compilation
Makefile_machine_fugaku_trad FUGAKU trad mode compilation

 17

3.1.1 Linux and Mac
On a Linux or Mac system, build the source code and install it as follows.
1) Edit pbvr.conf in directory PBVR/ depending on your environment.

The following example shows the parameters for building OpenMP versions of PBVR
Client, PBVR Filter, and PBVR Server using gcc compiler.
#Example of pbvr.conf

PBVR_MACHINE=Makefile_machine_gcc_omp

PBVR_MAKE_CLIENT=1

PBVR_MAKE_FILTER=1

PBVR_MAKE_SERVER=1

PBVR_SUPPORT_KMATH=0

To utilize Qt ver. PBVR Client, disable OpenGL ver. PBVR Client with describing
PBVR_MAKE_CLIENT = 0.

2) Compile in directory PBVR/ as follows.
$make
Following load modules are generated under PBVR/ directory.
PBVR Filter: Filter/pbvr_filter
PBVR Server: Server/pbvr_server
PBVR Client: Client/pbvr_client

3) Copy the generated load modules to an arbitrary directory that is specified in the PATH
environment parameter.

3.1.2 Windows
In Windows, uncompress the source code package and build the source code as follows.
1) Install GLUT

i) Download glut-3.7.6-bin_x64.zip(64bit) from the link below.
https://user.xmission.com/~nate/glut.html

ii) Extract the following files:
glut.h
glut32.lib
glut32.dll

In the setting of pbvr.sln (described later), the above files are set in the following
directories.
ü C:¥pbvr¥glut-3.7.6¥include¥GL¥glut.h
ü C: ¥pbvr¥glut-3.7.6¥lib¥ glut32.lib

2) Extract server on a Windows machine that has MSVC.
3) Open pbvr.sln with MSVC.
4) To select the function to be used in each environment, select “Solution Properties” from

MSVC's Solution Explorer. Then, select whether to support each project in "Configuration

https://user.xmission.com/~nate/glut.html

 18

Properties". When using the Qt version client, clear the Client check box to disable the
OpenGL version client support.

Figure 3.1-1 Inactivation of client support of OpenGL

5) To generate a program parallelized by OpenMP, enable "OpenMP support" in the
following project file.
ü Client
ü Common
ü Filter
ü FunctionParser
ü glui
ü KVS_Core
ü KVS_SupportGLUT
ü Server
Select each project from MSVC's Solution Explorer. Then, select whether to support
OpenMP in each project from "Configuration Properties" -> “C/C++” -> “Language”

6) Choose Release and x64 from the pull-down list as shown in Figure3.1-2.

 19

Figure3.1-2 Build configuration for MSVC

7) Go to the menu Build > Build Solution.
The load modules pbvr_filter.exe, pbvr_server.exe, and pbvr_client.exe are created under
¥¥x64¥Release.

3.1.3 Filter for VTK data
VTK6.0 or later is required to compile and install PBVR Filter for VTK data. Refer to the VTK
website (http://www.vtk.org/) for how to install the VTK library. In the installation, do the
following in CMake-gui.
1) Turn on the BUILD_SHARED_LIBS option.
2) Choose “Release” for the CMAKE_BUILD_TYPE option.
3) Set the VTK installation directory to CMAKE_INSTALL_PREFIX.
On each environment, PBVR Filter is compiled as follows.

Installation for Linux and Mac
Execute the following compilation commands.

$ export VTK_VERSION=n.n
$ export VTK_LIB_PATH=/usr/local/lib
$ export VTK_INCLUDE_PATH=/usr/local/include/vtk-n.n
$ make -f makefile.linux vtk

Here, n.n denotes the version of the VTK library. Each path should be modified depending on the
VTK installation directory.

Installation for Windows
Set the following environment parameters using
Control Panel > System > Property > Environment.

Parameter Value
VTK_LIB d:¥environments¥VTK¥lib
VTK_VERSION n.n
VTK_INCLUDE_PATH d:¥environments¥VTK¥include¥vtk-n.n

http://www.vtk.org/

 20

Here, n.n denotes the version of the VTK library. Each path should be modified depending on the
VTK installation directory.

 21

3.2 Client Program
The client program is built using the visualization library KVS
(https://github.com/naohisas/KVS) and the integrated development environment Qt Creator.

3.2.1 Installation of KVS library
For details on how to install KVS, please refer to the Wiki on the download page. However,
this client program is not built using the original KVS, but using a proprietary version of KVS
(https://github.com/CCSEPBVR/KVS) with improved framebuffer handling and other features.

As environment variables for installation, specify the KVS installation path in KVS_DIR and
add the commands for KVS in PATH.

Windows
Create the following environment variables from System Preferences and set their values.

Variable Value
KVS_DIR C:¥Program Files¥kvs (Anywhere you want)
PATH %PATH%;%KVS_DIR%¥bin

Linux/Mac
Set the following environment variables from a terminal.

Also, if you dare to use x86-64 architecture on a Mac with Apple silicon, install Rosetta and
switch architecture with the following command.

export KVS_DIR=~/local/kvs
export PATH=$KVS_DIR/bin:$PATH

arch -x86_64 bash

https://github.com/naohisas/KVS
https://github.com/CCSEPBVR/KVS/tree/release-v2.9.0.pbvr.memfix
https://github.com/CCSEPBVR/KVS/tree/release-v2.9.0.pbvr.memfix

 22

Set configuration by specifying kvs.conf as following.

The Mac environment does not use GLUT and GLEW for KVS installation. However, the
Linux/Windows environment uses GLUT and GLEW, and you need to install and set the path
accordingly.

Linux
Installation of GLUT

Installation of GLEW

Setting the install path to the environment variables KVS_GLUT_DIR and KVS_GLEW_DIR.

Windows
1. Download glut built in 64bit mode from following URL.

http://coskx.webcrow.jp/mrr/for_students/LectGLCG/distribution/index.html
The names of glut files included in the download file are 32bit (glut32.dll and glut32.lib), but
they are built for 64bit.

2. Download the 64-bit version of GLEW from the GLEW download page
(http://glew.sourceforge.net).

KVS_ENABLE_OPENGL = 1
KVS_ENABLE_GLU = 0
KVS_ENABLE_GLEW = 0 # Linux/Windowsのみ１とする
KVS_ENABLE_OPENMP = 0
KVS_ENABLE_DEPRECATED = 0

KVS_SUPPORT_CUDA = 0
KVS_SUPPORT_GLUT = 0 # Linux/Windowsのみ１とする
KVS_SUPPORT_OPENCV = 0
KVS_SUPPORT_QT = 0
KVS_SUPPORT_PYTHON = 0
KVS_SUPPORT_EGL = 0
KVS_SUPPORT_OSMESA = 0

sudo apt-get install freeglut3-dev libglut3-dev

sudo apt-get install libglew1.5-dev

export KVS_GLUT_DIR=”Install path for GLUT”
export KVS_GLEW_DIR=”Install path for GLEW”

http://coskx.webcrow.jp/mrr/for_students/LectGLCG/distribution/index.html

 23

3. Unzip the downloaded file and copy the following files contained in it to the specified folder.
Name Destination
glut32.dll
glew64.dll

C:¥PBVR_Dev¥OpenGL¥bin

glut32.lib
glew32.lib
glew32s.lib

C:¥PBVR_Dev¥OpenGL¥lib

glut.h
glew.h
wglew.h

C:¥PBVR_Dev¥OpenGL¥include¥GL

Create the environment variables KVS_GLUT_DIR and KVS_GLEW_DIR from System
Preferences and set the GLUT and GLEW installation location (in the example above, to
C:¥PBVR_Dev¥OpenGL).

Compile and install KVS on the terminal.

Windows
Launch the developer command prompt of Visual Studio and type nmake command to build
KVS by MSVC. In the following example, the directory of the KVS source code is
C:SRC¥KVS.

Linux/Mac
Build KVS from a terminal using make. In the example below, the directory of the KVS source
code is set to /SRC/KVS.

See the wiki on the download page for more options on compiling.

3.2.2 Setting for Qt Creator
The client program is configured in qtpbvr.conf. Edit qtpbvr.conf as follows to enable
PBVR_MODE=CS.

cd C:¥SRC¥KVS
nmake
nmake install

cd /SRC/KVS
make
make install

 24

#PBVR_MODE - Either CS (ClientServer), or IS (Insitu) - Needed on all platforms

PBVR_MODE = CS

#PBVR_MODE = IS

Open the project file QtClient.pro included in the source code with Qt Creator to configure
and build the client program.

1. Select “File” -> “Open File or Project”.
2. Select the QtClient.pro file from the QTPBVR/QtClient directory.

PBVRClient/QtClient/QtClient.pro
3. Select “QtClient” from Active Project.
4. Select “Build Settings” and check “Shadow Build”.
5. Set “../build” in “Build Directory”.

Figure 3.2-1 Client Configuration

Next, set KVS environment variables in your project. In "Build Settings", press "Detail" in
"Build Environment" to expand the section, and the environment variables KVS_DIR (where
KVS is installed), KVS_SOURCE (where KVS source code is installed), and GLEW_DIR
(where GLEW is installed) is added. On Windows, also add %GLEW_DIR%¥bin to the PATH.

 25

Figure 3.2-2 Setting of KVS environmental variables

Next, Client program can be built.
1. Select Edit on the left toolbar.
2. Right click on the “QtClient” project and select "Run qmake".
3. Right click the “QtClient” project and select "Build".

Figure 3.2-3 Build of Client Program

3.2.3 Deployment on Windows
This step is only necessary on Windows, and only if you want to deploy an application that can
be relocated from the build location.

C:> cd C:¥PBVR_Dev¥QTPBVR¥build¥App
C:> windeployqt –release pbvr_client.exe

 26

C:> cp C:¥PBVR_Dev¥OpenGL¥bin¥*.dll .

Next, copy shader programs from installed KVS to App folder.

Source: /include/Core/Visualization/Shader/
Destination: /App/include/Core/Visualization/Shader/

The App folder can now be relocated and executed from another location on the same
machine, or on another Windows machine.

3.2.4 CPU or GPU Renderer
The project will build default with GPU renderer. The GPU renderer is built by default setting.
But CPU renderer can be built for non GPU environment such as supercomputer.
To build the CPU renderer, open pbvr_client -> QtClient -> qtpbvr.conf and change the variable
specifying the build mode as follows.

From
REND_MODE = GPU
To
REND_MODE = CPU

3.2.5 Build of CGFormatExt4KVS
This section describes the installation procedure for CGFormatExt4KVS and dependent
libraries required for the CG data display function.

3.2.5.1 Assimp
The directory "<LIB_DIR>" for the "assimp-5.0.0" folder is used below to explain how to install
Assimp.

3.2.5.1.１. Windows

At the Tools command prompt, go to the "<LIB_DIR>/assimp-5.0.0" folder, and the following
command sets up and executes CMake.
cd assimp-5.0.0
SET SOURCE_DIR=.
SET GENERATOR=Visual Studio 15 2017
SET BINARIES_DIR="./BINARIES/x64"
SET CMAKE_GENERATOR=Visual Studio 15 2017

 27

SET CMAKE_GENERATOR_INSTANCE=C:¥Program Files (x86)¥Microsoft Visual
Studio¥2017¥Community
%CMAKE_BIN% CMakeLists.txt -G "%GENERATOR%" -A x64 -D
CMAKE_GENERATOR_INSTANCE="%CMAKE_GENERATOR_INSTANCE%" -D
CMAKE_GENERATOR="%CMAKE_GENERATOR%" -S %SOURCE_DIR% -
B %BINARIES_DIR%
%CMAKE_BIN% --build %BINARIES_DIR% --config debug
%CMAKE_BIN% --build %BINARIES_DIR% --config release

After above command, copy

<LIB_DIR>¥assimp-5.0.0¥BINARIES¥x64¥include¥assimp¥config.h
To <LIB_DIR>¥assimp-5.0.0¥include¥assimp¥config.h.

If the build is successful, the following assimp library files will be created in the "Release" and
"Debug" folders under the "assimp-5.0.0¥binaries¥x64¥code" folder.

l Release

Ø assimp-vc141-mt.lib
Ø assimp-vc141-mt.dll

l Debug
Ø assimp-vc141-mtd.lib
Ø assimp-vc141-mtd.dll
Ø assimp-vc141-mtd.pdb

Set following environment variables.
Variable name Value
ASSIMP_INC_DIR <LIB_DIR>¥assimp-5.0.0¥include
ASSIMP_LIB_DIR <LIB_DIR>¥assimp-5.0.0¥BINARIES¥x64¥code¥Release

3.2.5.1.２. MacOS

After installing cmake with Homebrew or other software, go to the "<LIB_DIR>/assimp-5.0.0"
folder in a terminal and execute the following command.
cd assimp-5.0.0
cmake -DCMAKE_OSX_ARCHITECTURES=”x86_64” -DCMAKE_OSX_DEPLOYMENT_T
ARET=”10.15” -DCMAKE_BUILD_TYPE=Release -DASSIMP_BUILD_ZLIB=on -DBUILD_
SHARED_LIBS=off CmakeList.txt
make
After the build, the following assimp library files will be created in the "assimp-5.0.0/lib/" folder.

・ libassimp.a

 28

・ libIrrXML.a
・ libzlibstatic.a

Set following environment variables.
Variable name Value
ASSIMP_INC_DIR <LIB_DIR>/assimp-5.0.0/include
ASSIMP_LIB_DIR <LIB_DIR>/assimp-5.0.0/lib

3.2.5.1.３. Linux

After installing cmake with your distribution's package management system (yum, apt, etc.),
go to the "<LIB_DIR>/assimp-5.0.0" folder in a terminal and execute the following command.
cd assimp-5.0.0
cmake -DCMAKE_BUILD_TYPE=Release -DASSIMP_BUILD_ZLIB=on -
DBUILD_SHARED_LIBS=off CmakeList.txt
make
After the build, the following assimp library files will be created in the "assimp-5.0.0/lib/" folder.

・ libassimp.a
・ libIrrXML.a
・ libzlibstatic.a
Set following environment variables.

Variable name Value
ASSIMP_INC_DIR <LIB_DIR>/assimp-5.0.0/include
ASSIMP_LIB_DIR <LIB_DIR>/assimp-5.0.0/lib

3.2.5.2 Autodesk FBX SDK
Download the installer for your OS from Autodesk's website
(https://aps.autodesk.com/developer/overview/fbx-sdk) and follow the steps below to install
the software.

3.2.5.2.１. Windows

Follow the instructions in the installer to install the software. The destination folder is usually
set to "C:¥Program Files¥Autodesk¥FBX¥FBX SDK¥2019.5", which is the default setting, but
it can be changed. Hereafter, this installation folder will be called <FBX_SDK_DIR>.
Set the following two user environment variables. In both cases, the <FBX_SDK_DIR> part
indicates the aforementioned installation folder.
Variable name Value
FBX_SDK_INC_DIR <FBX_SDK_DIR>¥include

 29

FBX_SDK_LIB_DIR <FBX_SDK_DIR>¥lib¥vs2017¥x64¥release

3.2.5.2.２. macOS

fbx202034_fbxsdk_clang_macos.pkg installs the SDK tools by default in the
/Applications/Autodesk/FBX SDK/2020.3.4/ directory. Set the following two user environment
variables.
Variable name Value
FBX_SDK_INC_DIR /Applications/Autodesk/FBX SDK/2020.3.4/include
FBX_SDK_LIB_DIR /Applications/Autodesk/FBX SDK/2020.3.4/lib/clang/release

3.2.5.2.３. Linux

Execute the installer "fbx202034_fbxsdk_linux" with the following command according to the
installation manual "Install_Fbxsdk.txt". The installation directory is indicated as
<FBXSDK_DIR>.

./fbx202234_fbxsdk_linux <FBXSDK_DIR>
Set the following two user environment variables.
Variable name Value
FBX_SDK_INC_DIR <FBXSDK_DIR>/include
FBX_SDK_LIB_DIR <FBXSDK_DIR>/lib/gcc/release

3.2.5.3 CGFormatExt4KVS
Move the "CGFormatExt4KVS" folder created by extracting CGFormatExt4KVS.zip to any
folder. This folder will be referred to as "<LIB_DIR>" in the following sections.

3.2.5.3.１. Build Setting

Open "kvsmake_libs.vc.conf" (Windows) or "kvsmake_libs.conf" (macOS/Linux) in the
"CGFormatExt4KVS" folder with a text editor and set the following items

 30

Variable name Value
CGFORMATEXT4KVS_SUPPORT_FBXSDK Set to 1 for supporting FBX format, or 0

if not supporting.
FBX_SDK_DIR Set FBX SDK install directory if FBX

supported.
FBX_SDK_LIB_PATH Set FBX SDK library directory if FBX

supported.
CGFORMATEXT4KVS_SUPPORT_ASSIMP Set 1 for supporting 3DS format, or 0 if

not supporting.
ASSIMP_DIR Set 3DS install directory if 3DS

supported.
ASSIMP_LIB_PATH Set 3DS library directory if 3DS

supported.

3.2.5.3.２. Windows

At the Tools command prompt execute the following command in
"<LIB_DIR>¥GFormatExt4KVS¥Lib" folder.
kvsmake -g LibCGFormatExt4KVS
kvsmake lib
Set the following two user environment variables.
Variable name Value
CGFORMAT_EXT4KVS_SHADER_DIR <LIB_DIR>¥CGFormatExt4KVS¥Lib

3.2.5.3.３. macOS/Linux

At the terminal, execute the following command int “<LIB_DIR>/CGFormatExt4KVS/Lib”
folder.

kvsmake -g LibCGFormatExt4KVS
kvsmake lib
Set the following two user environment variables.
Variable name Value
CGFORMAT_EXT4KVS_SHADER_DIR <LIB_DIR>/CGFormatExt4KVS/Lib

3.2.6 Dependent Library for VR
This section describes the installation procedure for the libraries required to build the client
program in VR mode. Note that VR mode works only on Windows.

 31

3.2.6.1 Oculus SDK
Oculus SDK is necessary for VR mode. Make “ovr_sdk_win_1.30.0_public” directory in
<LIB_DIR> directory. Set the following two user environment variables.
Variable name Value
OCULUS_INC_DIR <LIB_DIR>¥ovr_sdk_win_1.30.0_public¥LibOVR¥Include
OCULUS_LIB_DIR <LIB_DIR>¥ovr_sdk_win_1.30.0_public¥LibOVR¥Lb¥Windows¥x6

4¥Release¥VS2017

3.2.6.2 Dear ImGui
Dear ImGui is OpenGL based GUI library to display dialogue in VR space.
Move the "imgui-1.79" folder created by extracting "imgui-1.79.zip" to an arbitrary folder.
Move the files and folders in the "imgui-1.79" folder created by extracting "imgui-
1.79_cmakefiles.zip" to the "<LIB_DIR>¥imgui-1.79" folder.
Go to the "<LIB_DIR>¥imgui-1.79" folder at the Tools command prompt and execute the
following commands.
cmake -G "Visual Studio 15 2017" -A x64 .
cmake --build . --config release
copy Release¥libimgui.lib .¥
copy examples¥Release¥libimgui_impl_opengl3.lib .¥

 32

3.2.7 Build and Setting of Client Program
3.2.7.1 Mode Setting
The client program is configured by a variable PBVR_MODE in the qtpbvr.conf file.

Mode Value
Client and Server PBVR_MODE = CS
In-Situ PBVR_MODE = IS
VR PBVR_MODE = VR

3.2.7.2 Textured Polygon Format
By default, the client program is set to support reading CG data in FBX and 3DS formats. To
disable support for these formats, open QtClient/SETTINGS.pri with a text editor, etc. and
change the setting values of the following items To disable support for these formats, open
QtClient/SETTINGS.pri with a text editor, etc. and change the setting values of the following
items.

In case of NO 3DS format, comment out following 2 terms.

� DEFINES += CGFORMATEXT4KVS_SUPPORT_ASSIMP
� DEFINES += ENABLE_ASSIMP

In case of NO FBS format, comment out following 2 terms.

� DEFINES += CGFORMATEXT4KVS_SUPPORT_FBXSDK
� DEFINES += ENABLE_FBXSDK

Build CGFormatExt4KVS by matching the above items.

3.2.7.3 Common Build Setting
Open the project file QtClient.pro included in the source code with Qt Creator and configure
the client program.
1. Start Qt Creator and select "Open File or Project".
2. Select the QtClient.pro file from the QTPBVR/QtClient directory.

PBVRClient/QtClient/QtClient.pro
3. Select the Active Project "QtClient" 4.
4. Select "Build" from Build and Run in the configuration items according to the OS.

a. Windows : Desktop Qt 6.2.4 MSVC2019 64bit
b. macOS : Qt 6.2.4 for macOS (x86-64
c. Linux : Desktop Qt 6.2.4 GCC 64bit

5. Select "Build Settings" and check "Shadow Build". 6.
6. Specify the directory where the executable files will be stored in the "Build Directory". For

 33

example, set "... /build" for example.

Figure 3.2-4 Client program setting

3.2.7.4 Build Setting for VR Mode
Build of the VR mode requires to add the environmental variable in the project. In the "Build
Settings", under "Build Environment", click "Detail" to expand the section and add the
environment variable IMGUI_DIR (where Dear ImGui was installed).

 34

Figure 3.2-5 Setting of the environmental variable IMGUI_DIR

3.2.7.5 Build of Client Program
1. Select Edit by left tool bar.
2. Select “Run qmake” by right clicking QtClient project.
3. Select “Build” by right clicking QtClient project.

Figure 3.2-6 Build of client program

3.2.8 Deploy of Client Program on Windows
In tools command prompt, run following commands.

C:> cd C:¥PBVR_Dev¥QTPBVR¥build¥App

 35

C:> windeployqt –release pbvr_client.exe
C:> cp C:¥PBVR_Dev¥OpenGL¥bin¥*.dll .

Next, copy shader programs from the installed KVS to App folder.
Source: /include/Core/Visualization/Shader/
Destination: /App/include/Core/Visualization/Shader/

3.2.9 CPU/GPU Renderer
The project of Client Program generates GPU renderer in default. For non-GPU environment
like supercomputer, the project can generate CPU renderer. For building CPU renderer,
change following variable in qtpbvr.conf.

From
REND_MODE = GPU
To
REND_MODE = CPU

 36

4 PBVR Filter

PBVR Filter is an independent part of the PBVR system. PBVR Filter divides time-series
volume data, which then become the input for parallel processing in PBVR Server. In addition,
PBVR Filter generates Sub-volume data for the purpose of visualization. The data
decomposition is based on the octree model. PBVR Filter divides structured grid data and
unstructured grid data into user-specified octree regions in order to generate the input files for
parallel processing by PBVR Server.

4.1 Data Decomposition Model
As shown in Figure4.1-1, the octree data structure divides each edge of a cuboid in half,
recursively. Therefore, each cuboid has eight child cuboids, each of which has a single parent.

Figure4.1-1 Space partitioning with the octree data structure

As shown inFigure4.1-2, the boundaries of the child-cuboids are computed by dividing the

sum of the minimum and maximum coordinates values by two. Given a point in the domain,

 37

which cuboid containing the point can be determined by comparing the coordinates of the
vertex and the boundaries.

Figure4.1-2 Coordinates of the boundaries in the octree data structure.

 38

4.2 Launching PBVR Filter
The following examples show how to launch PBVR Filter. Note that PBVR Filter requires
parameters that are specified in a parameter file. The name of the parameter file is specified
in the command line when launching PBVR Filter. If no parameter file name is given or a non-
existent file name is provided, the execution of PBVR Filter will fail.
Examples:

Launch the MPI+OpenMP version of PBVR Filter with N processes:
$ mpiexec –n N filter param.txt

Launch the OpenMP version:
$ filter param.txt

*1. In both cases, the number of OpenMP threads is set in the environment parameter
OMP_NUM_THREADS.

4.2.1 Launching PBVR Filter with VTK Support
Depending on your environment, an environment parameter needs to be set to launch PBVR
Filter with VTK support.

Installation for Linux
Set the following parameter.

$ export LD_LIBRARY_PATH=${VTK_LIB_PATH}:$LD_LIBRARY_PATH

Installation for Mac
Set the following parameter.

$ export DYLD_LIBRARY_PATH=${VTK_LIB_PATH}:$DYLD_LIBRARY_PATH

Here, n.n denotes the version of the VTK library. Each path should be modified depending on the
VTK installation directory.

Installation for Windows
Set the following environment parameters using
Control panel > System > Property > Environment.

Parameter Value
Path d:¥Program¥VTK6.3.0¥bin

 39

The path should be specified to the bin directory under the VTK installation directory.

4.3 File Formats
This section describes the file formats that are read or written by PBVR Filter. All binary data
in input and output files are single precision, without a header or footer, and in little endian
format. The following three file formats are available: (1) the split format (which actually make
use of kvsml format), (2) the sub-volume aggregate format, and (3) the step aggregate format
(Figure4.3-1). The split format generates independent files for each time step for each sub-
volume. However, in this format, the number of files grows exponentially as the number of
layers in the octree increases. This problem can be avoided by using either of the other two
file formats. The sub-volume aggregate format aggregates files over different time steps (but
for the same sub-volume) to a single file. Conversely, the step aggregate format aggregates
files over different sub-volumes (for the same time step) to a single file. The following sections
explain these three file formats in detail.

Figure4.3-1 Output file formats available for PBVR Filter

4.3.1 Input Data Format
PBVR Filter can process the following data formats as input.
1) AVSFLD binary data*1
2) AVSUCD ascii and binary data*1
3) STL binary data*2
4) PLOT3D binary data*3
5) VTK Legacy binary data *4

*1. Details of AVS data formats can be found in the AVS manual or at
http://www.cybernet.co.jp/avs. AVSUCD binary data in “data” format can be used.
However, the geom and the data_geom formats are not supported. 2D and 3D elements
in Table4.7-1 and their mixed elements are supported.
*2. Details of STL data formats can be found at https://en.wikipedia.org/wiki
/STL_(file_format).
*3. Refer the details of PLOT3D data formats can be found at

http://www.cybernet.co.jp/avs/products/avsexpress/dataformat.html

 40

http://ntrs.nasa.gov/archive/nasa.
*4. Details of VTK data formats can be found at http://www.vtk.org/. PBVR Filter can
process VTK structured points, VTK structured grid, VTK rectilinear grid, VTK
unstructured grid, and VTK polygonal data.

4.3.2 Endian
The binary files used in PBVR Filter are in little endian format. Conversion is necessary on a
big endian machine if the input data files are not already in little endian format.

http://www.vtk.org/

 41

4.3.3 Filter Output Information File (PFI)
A PFI file is a binary data file that summarizes the information about an input volume. It contains
the following data:

 42

Total number of nodes (int)
Total number of elements (int)
Element type (int) *1
File type (int) *2
Number of files (int) *3
Number of components (int)
Beginning time step (int)
Ending time step (int)
Number of sub-volumes (int) *4
Minimum X-coordinate value of the entire 3D space (float)
Minimum Y-coordinate value of the entire 3D space (float)
Minimum Z-coordinate value of the entire 3D space (float)
Maximum X-coordinate value of the entire 3D space (float)
Maximum Y-coordinate value of the entire 3D space (float)
Maximum Z-coordinate value of the entire 3D space (float)
Number of nodes for sub-volume 1 (int)
Number of nodes for sub-volume 2 (int)
Number of nodes for sub-volume 3 (int)
 :
Number of nodes for sub-volume n (int)
Number of elements for sub-volume 1 (int)
Number of elements for sub-volume 2 (int)
Number of elements for sub-volume 3 (int)
 :
Number of elements for sub-volume n (int)
Minimum X-coordinate value of sub-volume 1 (float)
Minimum Y-coordinate value of sub-volume 1 (float)
Minimum Z-coordinate value of sub-volume 1 (float)
Maximum X-coordinate value of sub-volume 1 (float)
Maximum Y-coordinate value of sub-volume 1 (float)
Maximum Z-coordinate value of sub-volume 1 (float)
Minimum X-coordinate value of sub-volume 2 (float)
Minimum Y-coordinate value of sub-volume 2 (float)
Minimum Z-coordinate value of sub-volume 2 (float)
Maximum X-coordinate value of sub-volume 2 (float)
Maximum Y-coordinate value of sub-volume 2 (float)
Maximum Z-coordinate value of sub-volume 2 (float)
 :
Minimum X-coordinate value of sub-volume n (float)
Minimum Y-coordinate value of sub-volume n (float)
Minimum Z-coordinate value of sub-volume n (float)
Maximum X-coordinate value of sub-volume n (float)
Maximum Y-coordinate value of sub-volume n (float)
Maximum Z-coordinate value of sub-volume n (float)
Minimum value of variable 1 for time step 1
Maximum value of variable 1 for time step 1
Minimum value of variable 2 for time step 1

 43

Maximum value of variable 2 for time step 1
 :
Minimum value of variable N for time step 1
Maximum value of variable N for time step 1
 :
Minimum value of variable 1 for time step m
Maximum value of variable 1 for time step m
Minimum value of variable 2 for time step m
Maximum value of variable 2 for time step m
 :
Minimum value of variable N for time step m
Maximum value of variable N for time step m

*1. Element types are defined in Table4.7-1.
*2. Set the int value to 0, 1, or 2 in order to specify one of the following file formats:

0: SPLIT format
1: sub-volume aggregate format
2: step aggregate format

*3. The number of files used when the input file format is sub-volume aggregate format.
*4. The number of sub-volumes is 8n_layer, for example:

n_layer = 0 : 1
n_layer = 1 : 8
n_layer = 2 : 64
n_layer = 3 : 512
n_layer = 4 : 4,096
n_layer = 5 : 32,768
n_layer = 6 : 262,144
n_layer = 7 : 2,097,152

 44

4.3.4 SPLIT File Format
In addition to the data files, when the split file format is used, two files are produced for each
sub-volume. The first is the element configuration file and it describes which nodes are in each
cell. The second is the node coordinate file and it specifies the coordinates of the nodes.
Moreover, there is a parameter file for each sub-volume for each time step. This file assigns
the parameters (physical quantities) to each node. All three types of files are in kvsml format.
Thus, the total number of files is
Number of sub-volumes × 2 + Number of sub-volumes × Number of time steps × 2.
Example:

If n_layer is 7 and the number of time steps is 100, then the total number of files is
423,624,704.

4.3.4.1 File Naming Convention
In PBVR, files in the SPLIT format have the following naming convention.

prefix_XXXXX_YYYYYYY_ZZZZZZZ.kvsml : kvsml file（ASCII format）
prefix_YYYYYYY_ZZZZZZZ_connect.dat : element configuration file (binary
format)
prefix_YYYYYYY_ZZZZZZZ_coord.dat : node coordinate file（binary format）
prefix_XXXXX_YYYYYYY_ZZZZZZZ_value.dat :parameter file（binary format）

Here, prefix, ‘XXXXX’, ‘YYYYYYY’, and ‘ZZZZZZZ’ should be replaced with the following
strings.
‘prefix’ : Arbitrary string of characters that are allowed in a file name

 ‘XXXXX’ : Number of steps（5 digits）
 ‘YYYYYYY’ : Sub-volume index (7 digits)
 ‘ZZZZZZZ’ : Total number of sub-volumes（7 digits）

 45

4.3.4.2 kvsml File Format

<?xml version="1.0" ?>
<KVSML>
 <Object type="UnstructuredVolumeObject">
 <UnstructuredVolumeObject cell_type=" type of elements">
 <Node nnodes="number of nodes in the sub-volume">
 <Value veclen="number of variables">
 <DataArray type="float" file="prefix_XXXXX_YYYYYYY_ZZZZZZZ_value.dat" format="binary" />
 </Value>
 <Coord>
 <DataArray type="float" file=" prefix_YYYYYYY_ZZZZZZZ_coord.dat" format="binary" />
 </Coord>
 </Node>
 <Cell ncells="number of elements in the sub-volume">
 <Connection>
 <DataArray type="uint" file=" prefix_YYYYYYY_ZZZZZZZ_connect.dat" format="binary" />
 </Connection>
 </Cell>
 </UnstructuredVolumeObject>
 </Object>
</KVSML>

 46

4.3.4.3 Format of Element Configuration File
Node 1 of element 1
Node 2 of element 1
 :
Node n of element 1
Node 1 of element 2
Node 2 of element 2
 :
Node n of element 2
Node 1 of element 3
Node 2 of element 3
 :
Node n of element 3
 :
Node 1 of element N
Node 2 of element N
 :
Node n of element N

4.3.4.4 Format of Node Coordinate File
X-coordinate value of node 1
Y-coordinate value of node 1
Z-coordinate value of node 1
X-coordinate value of node 2
Y-coordinate value of node 2
Z-coordinate value of node 2
X-coordinate value of node 3
Y-coordinate value of node 3
Z-coordinate value of node 3
 :
 :
X-coordinate value of node m
Y-coordinate value of node m
Z-coordinate value of node m

 47

4.3.4.5 Variable File
Variable 1 of Node 1
Variable 1 of Node 2
Variable 1 of Node 3
 :
Variable 1 of Node n
Variable 2 of Node 1
Variable 2 of Node 2
Variable 2 of Node 3
 :
Variable 1 of Node n
Variable m of Node 1
Variable m of Node 2
Variable m of Node 3
 :
Variable m of Node n

 48

4.3.5 Sub-volume Aggregate Format
In sub-volume aggregate format, information on element configurations, node coordinates,

and parameters for all time steps are gathered into a single file for each sub-volume. By
specifying the number of files (as explained in Section 5.1.1.1), one can aggregate information
for several sub-volumes into an arbitrary number of files from 1 to the number of sub-volumes.
(If n_layer is 7, then the number of files is 2,097,152.)

4.3.5.1 Naming Convention
In PBVR, files in the sub-volume aggregate format have the following naming convention.

prefix_YYYYYYY_ZZZZZZZ.dat (binary format）

Here, ‘prefix’, ‘XXXXX’, ‘YYYYYYY’, and ‘ZZZZZZZ’ should be replaced with the following
strings.
prefix : Arbitrary string of characters that are allowed in a file name

 YYYYYYY : File number（7 digits）
ZZZZZZZ : Total number of files（7 digits）

 49

4.3.5.2 File Format
Index of first sub-volume
Index of last sub-volume
Node 1 of element 1
Node 2 of element 1

:
Node n of element 1

:
Node 1 of element N
Node 2 of element N
 :
Node n of element N
X-coordinate value of node 1
Y-coordinate value of node 1
Z-coordinate value of node 1

:
X-coordinate value of node m
Y-coordinate value of node m
Z-coordinate value of node m

:
 :

:
 :
 :
 :

:
Node 1 of element 1
Node 2 of element 1
 :
Node n of element 1
 :
Node 1 of element N
Node 2 of element N

:
Node n of element N
X-coordinate value of node 1
Y-coordinate value of node 1
Z-coordinate value of node 1

:
X-coordinate value of node m-1
Y-coordinate value of node m-1
Z-coordinate value of node m-1
X-coordinate value of node m
Y-coordinate value of node m
Z-coordinate value of node m

Sub-volume 1

Node

coordinate

Element

configuration

Sub-volume n

Element

configuration

Sub-volume information

Node

coordinate

 50

Variable 1 of node 1 for time step 1
Variable 1 of node 2 for time step 1

:
Variable 1 of node n for time step 1
 :
Variable m of node 1 for time step 1
Variable m of node 2 for time step 1

:
Variable m of node n for time step 1
 :
 :
Variable 1 of node 1 for time step 2
Variable 1 of node 2 for time step 2
 :
Variable 1 of node n for time step 2
 :
Variable m of node 1 for time step 2
Variable m of node 2 for time step 2
 :
Variable m of node n for time step 2
 :
 :
 :
 :
Variable 1 of node 1 for time step N
Variable 1 of node 2 for time step N
 :
Variable 1 of node n for time step N
 :
Variable m of node 1 for time step N
Variable m of node 2 for time step N
 :
Variable m of node n for time step N
 :
 :
Variable 1 of node 1 for time step N
Variable 1 of node 2 for time step N
 :
Variable 1 of node n for time step N
 :
Variable m of node 1 for time step N
Variable m of node 2 for time step N
 :
Variable m of node n for time step N

Sub-volume unit

Sub-volume unit

Sub-volume unit

Step unit

Step unit

Sub-volume unit

 51

4.3.6 Step Aggregate Format
In step aggregate format, there is an element configuration file and a node coordinate file.
These two files contain information on all sub-volumes. A parameter file is produced for each
step. Therefore, the total number of files is the number of steps + 2.

4.3.6.1 File Naming Convention
In PBVR, files in the step aggregate format have the following naming convention.
prefix_connect.dat : element configuration file （binary format）
prefix_coord.dat : node coordinate file （binary format）
prefix_XXXXX_value.dat :parameter file （binary format）

Here, ‘prefix’ and ‘XXXXX’ should be replaced with the following strings.
prefix : Arbitrary string of characters that are allowed in a file name
XXXXX : Number of steps（5 digits）

 52

4.3.6.2 Element Configuration File Format
Node 1 of element 1 for sub-volume 1
Node 2 of element 1 for sub-volume 1

:
Node n of element 1 for sub-volume 1
Node 1 of element 2 for sub-volume 1
Node 2 of element 2 for sub-volume 1

:
Node n of element 2 for sub-volume 1
Node 1 of element 3 for sub-volume 1
Node 2 of element 3 for sub-volume 1

:
Node n of element 3 for sub-volume 1
 :
Node 1 of element N for sub-volume 1
Node 2 of element N for sub-volume 1
 :
Node n of element N for sub-volume 1
 :
Node 1 of element 1 for sub-volume M
Node 2 of element 1 for sub-volume M
 :
Node n of element 1 for sub-volume M
Node 1 of element 2 for sub-volume M
Node 2 of element 2 for sub-volume M
 :
Node n of element 2 for sub-volume M
Node 1 of element 3 for sub-volume M
Node 2 of element 3 for sub-volume M
 :
Node n of element 3 for sub-volume M
 :
Node 1 of element N for sub-volume M
Node 2 of element N for sub-volume M
 :
Node n of element N for sub-volume M

Element
unit

Sub-volume
unit

 53

4.3.6.1 Node Coordinate File Format
X-coordinate of node 1 for sub-volume 1
Y-coordinate of node 1 for sub-volume 1
Z-coordinate of node 1 for sub-volume 1
X-coordinate of node 2 for sub-volume 1
Y-coordinate of node 2 for sub-volume 1
Z-coordinate of node 2 for sub-volume 1
X-coordinate of node 3 for sub-volume 1
Y-coordinate of node 3 for sub-volume 1
Z-coordinate of node 3 for sub-volume 1

:
:

X-coordinate of node m for sub-volume 1
Y-coordinate of node m for sub-volume 1
Z-coordinate of node m for sub-volume 1

:
:
:

X-coordinate of node 1 for sub-volume M
Y-coordinate of node 1 for sub-volume M
Z-coordinate of node 1 for sub-volume M
X-coordinate of node 2 for sub-volume M
Y-coordinate of node 2 for sub-volume M
Z-coordinate of node 2 for sub-volume M
X-coordinate of node 3 for sub-volume M
Y-coordinate of node 3 for sub-volume M
Z-coordinate of node 3 for sub-volume M

:
:

X-coordinate of node m for sub-volume M
Y-coordinate of node m for sub-volume M
Z-coordinate of node m for sub-volume M

Node unit

Sub-volume unit

 54

4.3.6.2 Variable File Format
Variable 1 of node 1 for sub-volume 1
Variable 1 of node 2 for sub-volume 1
Variable 1 of node 3 for sub-volume 1

:
Variable 1 of node n for sub-volume 1
Variable 2 of node 1 for sub-volume 1
Variable 2 of node 2 for sub-volume 1
Variable 2 of node 3 for sub-volume 1

:
Variable 2 of node n for sub-volume 1
Variable m of node 1 for sub-volume 1
Variable m of node 2 for sub-volume 1
Variable m of node 3 for sub-volume 1

:
Variable m of node n for sub-volume 1

:
:
:

Variable 1 of node 1 for sub-volume M
Variable 1 of node 2 for sub-volume M
Variable 1 of node 3 for sub-volume M

:
Variable 1 of node n for sub-volume M
Variable 2 of node 1 for sub-volume M
Variable 2 of node 2 for sub-volume M
Variable 2 of node 3 for sub-volume M

:
Variable 2 of node n for sub-volume M
Variable m of node 1 for sub-volume M
Variable m of node 2 for sub-volume M
Variable m of node 3 for sub-volume M

:
Variable m of node n for sub-volume M

Variable
unit

Sub-volume unit

 55

4.4 Parameter File
The parameter file is in ASCII format. It is used in PBVR Filter for AVSFLD/UCD, PLOT3D,
STL, and VTK data. The name of the parameter file is specified on the command line when
running PBVR Filter. Table4.4-1 lists the parameters.

 56

Table4.4-1 List of PBVR Filter input parameters

 57

Parameter name Parameter detail Default
value

Notes

in_dir Input file directory ‘.’ Directory path for input files *1
field_file AVSFLD file name - *2, *3, *4
stl_binary_file STL file name - *2
Plot3d_config_file PLOT3D configuration

file name
- *2, *3

vtk_file VTK file name - *2, *3, *5
vtk_in_prefix Prefix of time series

VTK data files
- *2, *3, *5

vtk_in_suffix Suffix of time series
VTK data files

- *2, *3, *5

ucd_inp AVSUCD file name - ASCII format*2
in_prefix Prefix of time series

AVSUCD data files
- Binary format*2

in_sufix Suffix of time series
AVSUCD data files

- Binary format*2

format Step number format
for time series data

“%05d”

out_dir Output file directory ‘.’ Directory path of output files
 *1

out_prefix Output file prefix ‘output.’
start_step Starting step number ‘1’ *6
end_step Ending step number ‘1’ *6
n_layer Number of octree layer ‘0’ An integer from ‘0’ to ‘7’
output_type File format ‘0’ ‘0’: SPLIT format

‘1’: sub-volume aggregate
‘2’: step aggregate

file_number Number of output files ‘0’ An integer greater than 0.
When set to ‘0’, the number of
sub-volume is used. Valid only
in Sub-volume aggregate file
format.

mpi_volume_div Number of MPI
parallelism in sub-
volume

‘1’ The total number of MPI
processes is given by
mpi_volume_div ×
mpi_step_div. *7

 58

mpi_step_div Number of MPI
parallelism in time
step

‘1’ The total number of MPI
processes is given by
mpi_volume_div ×
mpi_step_div *7

mpi_div Configuration of 2D
MPI parallel
processing

‘2’ ‘0’: defined by mpi_volume_div’
and mpi_step_div.

‘1’: automatic with priority on
sub-volume decomposition.

‘2’: automatic with priority on
step decomposition.

Options 1 and 2 do not work
when mpi_volume_div and
mpi_step_div are set.

multi_elem_type Flag on mixed
element type
unstructured grid

‘0’ ‘0’: data with a single element
type
‘1’: data with multiple element
types

temp_delete Flag on temporary
files produced by
processing mixed
element data

‘1’ ‘0’: keep temporary files
‘1’: delete temporary file

*1. Directories can be specified either with an absolute path or a relative path, although tilde
(~) cannot be used as an abbreviation for the home directory.

*2. One of the following options, field_file, stl_binary_file, plot3d_config_file, vtk_file,
vtk_in_prefix(suffix), ucd_inp, or in_prefix(suffix) should be given.

*3. When the input data are 2D or 3D structured grid data, the output data are converted to
unstructured grid data with linear quadrilateral or hexahedral elements, respectively.

*4. The file can refer only to the parameters ‘nstep’, ‘ndim’, ‘dim1’, ‘dim2’, ‘dim3’, ‘veclen’,
‘coord [123]’, and ‘variable.

*5. Five VTK Legacy data formats (VTK Structured Points, VTK Structured Grid, VTK
Rectilinear Grid, VTK UnstructuredGrid, and VTKPolygonalData) are automatically
recognized by PBVR Filter.

*6. Valid only for time series data.
*7. When ‘mpi_volume_div’ and ‘mpi_step_div’ are specified, an error occurs if the value of

‘mpi_volume_div’ × ‘mpi_step_div’ is not identical to the number of processes.

4.4.1 PLOT3D configuration file
PLOT3D data formats are described by a PLOT3D configuration file. Here, usebytecount
should be set to be 1 for Fortran and 0 for C binary data, respectively.

 59

Parameter name Use Default value
coordinate_file_prefix Prefix of coordinate file -
coordinate_file_suffix Suffix of coordinate file -
coordinate_mode_precision Precision (float | double) double
coordinate_mode_usebytecount 1 for true, 0 for false true
coordinate_mode_endian Endian (little | big) little
coordinate_mode_iblanks 1 for true, 0 for false false
solution_file_prefix Prefix of solution file -
solution_file_suffix Suffix of solution file -
solution_mode_precision Precision (float | double) double
solution_mode_usebytecount 1 for true, 0 for false true
solution_mode_endian Endian (little | big) little
function_file_prefix Prefix of function file -
function_file_suffix Suffix of function file -
function_mode_precision Precision (float | double) double
function_mode_usebytecount 1 for true, 0 for false true
function_mode_endian Endian (little | big) little

4.5 MPI Parallel Processing
This section describes how the computation is divided in MPI parallel processing. As an
example, consider processing data with 50 time steps and 8 sub-volumes.

1) Partitioning the set of time steps first

l If the number of processes is equal to or less than the number of the time steps, divide
the number of time steps by the number of processes.
 Example:

If there are 8 processes exist, each process treats 6 time steps × 8 sub-volumes,
or 7 time steps × 8 sub-volumes.

l If the number of processes is larger than the number of time steps, each process
handles the data for only a single time step. The number of sub-volumes for each
process is specified in the following manner. First, allocate the same number of
processes to each time step, and then divide the number of sub-volumes by this
number of processes.
 Example:

If128 processes are used, PBVR Filter works with 50 × 2 = 100 processes (with
the residue of 28 processes), and each process treats 1 time step × 4 sub-
volumes.

2) Partitioning the set of sub-volumes first
l If the number of processes is equal to or less than the number sub-volumes, divide

 60

the number of sub-volumes by the number of processes.
 Example:

If 8 processes are used, each process treats 50 steps × 1 sub-volume.
l When the number of processes is larger than the number of sub-volumes, each

process handles the data for only a single sub-volume. The number of time steps for
each process is specified in the following manner. First, allocate the same number of
processes to each sub-volume, and then divide the number of time steps by this
number of processes.
 Example:

l If 128 processes are used, then 16 processes are used for each sub-volume, giving
8 × 16 = 128 processes (with a residue of 0 processes), and each process treats 3
times steps × 1 sub-volume or 2 time steps × 1 sub-volume.

3) Employing a parallelization that is more complex
l If the parallel parameters mpi_volume_div and mpi_step_div are both specified, an

error occurs if mpi_volume_div × mpi_step_div is not equal to the number of
processes.

4.6 Execution in the Staging Environment of the K computer
This section describes how to execute PBVR Filter in the staging environment of the K
computer. When launching PBVR Filter, the parameter file and staging parameters must be
consistent with each other. Depending on the output data format of PBVR Filter, multiple
processes can write to a single file. In this case, the output location should be a shared domain
on the local file system that is accessible to all processes.

 61

4.6.1 Execution Shell Script and Parameter File

1. Transfer the load module to the rank directory of each process.
2. Transfer a parameter file to the rank directory of each process.
3. Transfer input data to the shared domain in the local file system.
4. Transfer output data from the shared domain to a directory in the global file system.
5. Transfer log and error files from the rank directory to a directory in the global file system.
6. When launching the load module in the rank directory of each process, specify the

parameter file (which lies in the rank directory of each process) in the command line
argument.

#!/bin/bash -x

#PJM --rsc-list "elapse=01:00:00"

#PJM --rsc-list "node=64"

#PJM --rsc-list "rscgrp=small"

#PJM --stg-transfiles all

#PJM --mpi "proc=64"

#PJM --mpi "use-rankdir" #Use rank directory

#PJM --stgin "rank=* ./filter %r:./" #Stage in for load

module………①

#PJM --stgin "rank=* ./param.txt %r:./" #Stage in for file………

…………②

#PJM --stgin "rank=0 /data/ucd/ucd*.dat 0:../" #Stage in for shared

file…………③

#PJM --stgout "rank=* %r:../output*.dat ./" #Stage out for resulting

file……④

#PJM --stgout "rank=* %r:./pbvr_filter.* ./LOG/" #Stage out for file……

……………⑤

#PJM -S

. /work/system/Env_base

export PARALLEL=8

export OMP_NUM_THREADS=8

mpiexec -n 64 lpgparm -p 4MB -s 4MB -d 4MB -h 4MB -t 4MB filter param.txt …

……⑥

 62

7. Specify the path for input data files. (The path should be provided as a relative path. The above

sample reads input data from a shared domain.)
8. Specify the path for output data file. (The path should be given as a relative path. The above

sample writes output data to a rank directory for each process by using of SPLIT file format.)
9. Specify an output file format. (The above sample uses the SPLIT format.)

4.6.2 Input/Output Files and Directories
This section describes the relation between input and output files for PBVR Filter and the
directories in the staging environment. Output data in SPLIT format can be written in a rank
directory, while output data in the other formats require a shared directory for data aggregation.

Table4.6-1 Table of input and output files and directories on the K computer

I/O File type Rank directory Shared domain
Input Parameter file Yes *1 Yes

Input data Yes *2 Yes
Output

Output
data

SPLIT format Yes Yes
Step aggregate format No Yes
Sub-volume aggregate
format

No Yes

Log & error file Yes *3 No
*1. The parameter file is read only from rank 0.
*2. The size and number of the input files should not exceed the resource limits of the staging

environment (800 files/node and 14GB/node).
*3. The output directory is always a rank directory.

4.7 Unstructured Grid Data with Mixed Elements
When unstructured grid data contains several element types, PBVR Filter first generates UCD
binary data blocks for each element type. These blocks are then divided into sub-volumes,

in_dir=../ …………⑦

field_file=pd3d.fld

out_prefix=case0

out_dir=./ …………⑧

file_type=0 …………⑨

n_layer=3

start_step=0

end_step=511

 63

which are read by PBVR Server. By setting the parameter multi_element_type to 1 in the
parameter file, PBVR Filter produces a sub-volume for each element type.

Output files are generated for each element type. The file names have a two-digit prefix that
represents the element type. The following list shows the prefix for each element type.

in_dir=.

in_prefix=MULTI

in_suffix=.dat

out_dir=.

out_prefix=div

out_prefix=.dat

format=%03

start_step=1

end_step=20

multi_element_type=1

 64

Table4.7-1 List of element types

Element name Element type code
Triangle Linear 2
Quadrilateral Linear 3
Tetrahedron Linear 4
Pyramid 5
Prism 6
Hexahedron Linear 7
Triangle Quadratic 9
Quadrilateral Quadratic 10
Tetrahedral Quadratic 11
Hexahedral Quadratic 14

For example, for the above parameter file, if the input data consist of linear tetrahedral
elements and quadratic tetrahedral elements, the following output files are generated.

Table4.7-2 File names for mixed elements

Original mixed elements
data

 Linear
tetrahedral data

Quadratic
tetrahedral data

MULTI001.dat 04-div001_- 11-div001_-
MULTI002.dat 04-div002_- 11-div002_-
MULTI003.dat ⇒ 04-div003_- 11-div003_-
MULTI004.dat Decompose 04-div004_- 11-div004_-
MULTI005.dat 04-div005_- 11-div005_-
 ： ： ：
MULTI020.dat 04-div020_- 11-div020_-

 65

5 PBVR Server

In PBVR, the volume data is converted to the particle data, and the particle data is projected
onto the screen to create the visualization result. PBVR Server reads sub-volume files, which
are produced by PBVR Filter, and performs parallel particle generation of the particle data. The
particle data is transferred to PBVR Client via socket communication.

5.1 Launching PBVR Server
PBVR can run on supercomputers to generate particle data either in batch mode or in client–
server mode. In client–server mode, the interactive processing is realized by connecting PBVR
Client and PBVR Server via a socket communication. Stand-alone processing on PCs or
workstations is also possible by launching PBVR Client and PBVR Server in client–server
mode on the same machine. The following example shows how to launch PBVR Server:

Examples:
Launch the MPI+OpenMP version, and use N processes
$ mpiexec -n N pbvr_server

Launch the OpenMP version
$ pbvr_server

*1. Since the MPI+OpenMP version of PBVR Server operates with master-slave MPI
processing, the number of processes N should be specified by the number of slave
processes + 1.

*2. In both processing modes, the number of OpenMP threads is set with environment
parameter OMP_NUM_THREADS.

*3. In Windows, these commands should be launched from Visual Studio 2013 x64 Native
Tools command prompt.

The method of socket communication between the remote and the user PC is described in (5.2),
the launch of the client program is described in (6.1).

 66

Table5.1-1 List of command line options for the PBVR Server program

Option Launch
mode *1

Possible
values

Default
values

Functionality

-h CS,B - - This shows the list of available
options and parameters

-B B - - To launch in the batch mode
-pa B File name - Visualization parameter file *2
-pd B Real

number
1.0 Particle density

-S B u, m, r u Method for sampling particles
 u: uniform sampling
 m: metropolis sampling
 r: rejection sampling

-plimit B 1-99999999 1000000 Maximum number of particles
-vin B File name - Input volume data (a PFI or PFL file)

*3
-pout B File name ./ Name of the output particle data file

*3
-p CS Port number 60000 Port number for socket

communication
-viewer B 100-9999

×100-9999
620×620 Viewer resolution

-Bd B - - Create particle files separately
without aggregating the sub-
volumes

-Bs B Integer of 0 or
more

First step of
specified PFI
file group

First time step for visualizing

-Be B Integer of 0 or
more

Last step of
specified PFI
file group

Last time step for visualizing

*1. In launch mode, CS and B denote client-server mode and batch mode, respectively.
*2. The visualization parameter file is explained at 5.1.1.
*3. This option specify a relative of an absolute path of PFI file generated for filtered volume

data or PFL file (5.1.1.1) in distributed processing. Do not omit the file extension. If this
option conflicts with the option in the parameter file specified with ‘–pa’, the latter is
ignored.

*4. This generates a set of particle data files with names
“[file name]_[time step]_[number of sub-volumes]_[sub-volume index].kvsml,”

 67

where [file name] is the prefix specified with this option. If the prefix is omitted, the
prefix ’server’ will be inserted automatically.

5.1.1 Launching PBVR Server in Batch Mode
For command line option ‘-B’ is given, PBVR Server is launched in batch mode. The following
example shows how to launch PBVR Server in the batch mode (for the MPI+OpenMP version).

$ mpiexec -n 5 pbvr_server -B -vin ./data/case.pfi -pout ./output/case -pa ./param.in

In this example, the input data file ./data/case.pfi is processed with the visualization

parameter file ./param.in to output the following particle data.

./output/case_XXXXX_YYYYYYY_ZZZZZZZ.kvsml

Here
XXXXX ：Number of steps（5 digit）
YYYYYYY ：Index for the sub-volume（7 digit）
ZZZZZZZ ：Total number of Sub-volumes（7 digit）

Usually, all the sub-volumes for each time step are integrated, so both YYYYYYY and
ZZZZZZZ are 1. If you want to output particle data for each of the sub-volumes without the
integration, command line option -Bd must be specified when starting the server in batch mode.
The visualization parameter file is specified with the command line option -pa. This file is
generated in client–server mode interactively. Large-scale data processing in batch mode is
executed using this file as is or with relevant values for the parameters.

5.1.1.1 Processing of Distributed Files
For visualization, this system integrates multiple volume data files from distributed
environments. The volume data files are filtered one by one. One or more PFI files are
generated for each volume data file. If two or more PFI files are needed for an input volume
data file, then their files names are defined in a PFL file. The PFL file is specified with the
command line option “-vin”.
The first line of a PFL line is “#PBVR PFI FILES”. The PFI file names are written from the
second line, using the absolute path or relative path of the PFL file. The following example
shows the contents of a PFL file:

#PBVR PFI FILES
hex_filter_out/hex.pfi
hex2_filter_out/hex2.pfi

 68

5.1.2 Launching PBVR Server in Client-Server Mode
If the command line option “-B” is not specified, PBVR Server is launched in client–server
mode, as in this example:

$ mpiexec -n 5 pbvr_server
first reading time[ms]:0
Server initialize done
Server bind done
Server listen done
Waiting for connection ...

When “Waiting for connection” appears, as in the above example, and PBVR Server is waiting
for socket communications with PBVR Client, launch PBVR Client in another terminal. In
client–server mode, the input volume data name should be given to PBVR Client rather than
to PBVR Server.
The default port number for the socket communication is 60000. To change the port number,
use the command line option ‘-p’:

$mpiexec -n 5 pbvr_server -p 55555

5.2 Connecting Client and Server via Socket Communication
The client program and the server program perform socket communication using the port
connected by port forwarding, and send and receive particle data and visualization parameters.
This section describes about the port forwarding using ssh.

5.2.1 Local Connection
The following example shows how to launch both PBVR Client and PBVR Server on a single
machine ‘machineA’. In this example, they cooperate using the default port number 60000 of
‘machineA’.

Step 1 [Launch PBVR Server]

machineA> mpiexec -n 5 pbvr_server
Step 2 [Launch PBVR Client]

machineA> pbvr_client -vin filename

5.2.2 Remote Connection
This section shows an example in which the local machine (machineA) and remote machine
(machineB) are connected by ssh port forwarding, and the client program is started on

 69

machineA and the server program is started on machineB. Basically, the startup method after
connecting ssh port forwarding is the same as standalone.
ssh port forwarding is a mechanism to transfer the port on the network using the route
communicated by ssh called ssh tunnel. There are three types of port forward: local forward,
remote forward, and dynamic forward. In this system, local forward is used to connect the port
of the client PC to the target via the ssh server. The outline and command of ssh local forward
are shown below.

Figure 5.2-1 Abstract of local forward

[Command of SSH local forward]
ClientPC> ssh -L 50000:{Target Address}:60000 {Remote Server Address}

In the ssh local forward command, if the remote server and the target match, the target address
will be “localhost”. Also, any port number can be used except the port numbers assigned to
TCP and UDP, and in this example, the port numbers 50000 and 60000 are used.
The following shows an example in which port 50000 of machineA is connected to port 60000
of machineB using ssh port forwarding and the client program and server program are started
on each machine.

Step1 [SSH port forwarding]
machineA> ssh -L 50000:localhost:60000 username@machineB

（The 50000 port of machineA is forwarded to the 60000 port of machineB. Since
machintB itself is the target, the target address is localhost.）

Step2 [Launch PBVR Server]
machineB> mpiexec –n 5 pbvr_server

Step3 [Launch PBVR Client]
machineA> pbvr_client –vin filename

The following shows an example in which a user enters an interactive node interactB from a
login node of machineB and connects port 50000 of machineA to port 60000 of interactB.

[SSH port forwarding]
machineA> ssh -L 50000:interactB:60000 username@machineB

Target
Port 60000

Client PC

Port 50000

SSH Tunnel

Remote Server

SSH
Server

 70

5.2.3 Testing SSH Port Forwarding Connection
To check if SSH port forwarding is available, use the following test program, which simply
transfers characters input from PBVR Server to PBVR Client. This program is available from
the link below.

“C for Linux 2” Mitsuyuki Komata, SYUWA System, Inc., September 2005 (Japanese).
http://www.ncad.co.jp/~komata/c4linux2/

Launch PBVR Server
server port_number

Launch PBVR Client
client server_hostname port_number

5.2.4 Remote Connection from SSH Client
This section shows a port forwarding (local forward) using SSH client software Tera Term in
Windows environment.

1) Launch TeraTerm and hit cancel in the “New connection” dialog.

Figure5.2-2 Tera Term dialog 1)

2) Select Setup > SSH Transfer from the menu bar. Click Add… in the Forwarding Setup

dialog. Check the dialogue box “Display remote X application on local X server”.

http://www.ncad.co.jp/~komata/c4linux2/

 71

Figure5.2-3 Tera Term dialog 2)

3) In the Select Direction for Forwarded Port dialog, select Forward Local Port (it means

the local forwarding) and enter the port number to be used for PBVR Client, which is
corresponds to the port 50000 in Figure 5.2-1. In the to remote machine text field, enter
the domain name or the IP address of the server, which is corresponds to the target
address in Figure 5.2-1. In the port field, enter the port number to be used on PBVR
Server, which is corresponds to the port 60000 in Figure 5.2-1. Click on OK to complete
the setup of port forwarding.

Figure5.2-4 Tera Term dialog 3)

4) Connect to the server. Select File > New Connection from the menu bar. In the New

Connection panel, enter the host name of the serve which is corresponds to the remote
server address in Figure 5.2-1, and click on OK. In the SSH Authentication panel, enter
the user name and passphrase, or specify the location of the private key file, and click
on OK.

 72

Figure5.2-5 Tera Term dialog 4)

 73

5.3 Visualization on Front-End Server
PBVR allows not only client/server type visualization via socket communication, but also
visualization on a front-end server via VNC or X Window System. Both client and server
programs are started on the front-end server for the local connection (5.2.1), GUI using X
Window System, or GUI using VNC desktop screen containing the GUI is transferred to the
user PC.

VNC
If OSMesa and VNC server are installed on the front-end server, PBVR can run on the front-
end server and be visualized on the VNC viewer. The way to use the VNC server depends on
the operation of the front-end server, so please contact the administrator.

X Window System (Linux)
Since Linux supports the X Window System by default, PBVR can be used remotely by simply
launching with the local connection. Login to the front-end server (machineA) with two
terminals and start the client and server programs respectively.

Step1: Launch the server program on terminal 1.
UserPC:$ ssh usename@machineA
machineA:$ mpiexec –n 5 pbvr_server

Step2: Launch the client program on terminal 2. “XY” option is required for X Window System.
UserPC:$ ssh -XY usename@machineA
machineA:$ pbvr_client –vin filename

X Window System (Windows)
Installation of Xming and TereTerm is required to use X Window System on Windows.

Step1: Download and install Xming and Xming-fonts.
Step2: Set X11 forwarding for TeraTerm (5.2.4).
Step3: Launch Xming using Xlaunch
Step4: Launch TeraTerm and connect the front-end server.
The subsequent steps are the same as in the Linux case.

X Window System (Mac)
There is a X Window System application Xquartz for Mac OSX, but PBVR doesn’t support
Xquartz.

https://sourceforge.net/projects/xming/

 74

6 PBVR Client

PBVR Client can operate either in client–server mode or in stand-alone mode. In client–server
mode, PBVR Client receives particle data that is rendered using OpenGL based on primitives
generated in PBVR Server. PBVR Client also gets visualization parameters (a transfer function
etc.) via user interaction and sends the parameters to PBVR Server. In this way, PBVR Client
controls the volume rendering process in PBVR Server. The data transfer between PBVR
Client and PBVR Server uses a socket communication with a user-specified port number. In
contrast, when PBVR is in stand-alone mode, it reads and displays particle data generated by
PBVR Server operating in batch mode. Launching the server program is described in (5.1), the
socket communication between the remote and the user PC is described in (5.2).

6.1 Launching PBVR Client
The following examples show how to launch the client program in client-server mode and to
do so in stand-alone mode.

[Launch PBVR Client in client-server mode] *1
$ pbvr_client -vin [sub-volume file name *2] [command line options]

[Launch PBVR Client in stand-alone mode]
$ pbvr_client [particle data file name] [command line options]

*1. Client–server mode requires that PBVR Server has already been started.
*2. The file name for a sub-volume can be specified with the absolute or the relative path

to the PFI file.

As with PBVR Server, if two or more PFI files are needed for an input volume data file, create
a PFL file and specify it with the command line option “-vin” (Section 5.1.1.1).

 75

Table6.1-1 List of command line options for client

Option Launch mode *1 Parameter
value

Default
parameters

Function

-h CS,SA - - List of options and
parameters

-pd CS Real
number

1.0 Particle density

-S CS u, m, r u Particle sampling method
u: uniform sampling
m: metropolis sampling
r: rejection sampling

-plimit CS 1~99999999 1000000 Particle limit *2
-tdata CS all, div all Particle data transfer

method
all: step batch

transmission,
div: sub-volume divide

forwarding）
-pa CS,SA File name - Visualization parameter

file
-vin CS File name - Name of the PFI or PFL

file of input volume data
*2

-tf CS File name - Name of the transfer
function file *3

-p CS Port number 60000 Port number for socket
communication

-viewer CS,SA 100-9999
×100-9999

620×620 Viewer resolution

-
shading

CS,SA {L/P/B}, ka, kd,
ks, n

- Shading method *4

-pout CS,SA File name - Output file name for
particle data *5

-pin1 SA File name - Input file name for particle
data

-iout CS,SA Directory name ./ Output directory name for
image files

*1. CS and SA denote client-server mode and stand-alone mode, respectively.

 76

*2. This option specifies the relative or absolute path of a PFI file generated for filtered
volume data or a PFL file for distributed processing. Do not omit the file extension. If
this option conflicts with the option in the parameter file specified with “-pa”, the latter is
ignored.

*3. Transfer function files are generated by hitting the Export File button in the Transfer
Function Editor. To apply the transfer function specified in this option, hit the Apply
button in the Transfer Function Editor. Alternatively, the transfer function file can be
loaded also with the Import File button.

*4. This argument specifies the shading parameters.

L: Lambert Shading
This method ignores specular reflection during shading. Parameters “ka” and “kd” are
the coefficients for ambient and diffusion, respectively. They can have a value
between 0 and 1.

P：Phong Shading
This method adds specular reflection to Lambert shading. Phong shading imitates
smooth metal and mirrors, which is sometimes called highlighting. Parameters “ka”,
“kd”, “ks” (which are the coefficients for specular reflection and have values between 0
and 1) and “n” (which is the strength of the highlighting and has values between 0 and
100) are used.

B：Blinn-Phong Shading
This is a simplified form of Phong shading. Parameters “ka”, “kd”, “ks”, and “n” are
used.

*5. This generates a series of particle data files that are named
“[prefix]_[time index]_[number of sub-volumes]_[sub-volume index].kvsml”,
where the prefix is specified by this option.

 77

6.2 Terminating PBVR

6.2.1 Standard Termination
PBVR Client’s rendering process for the time-series data starts at the initial time step, and
continues to the final time step. When the final time step is rendered, PBVR Client returns to
the initial time step to loop over the steps. To terminate PBVR Client, press Ctrl+C in the
console running PBVR.

In client-server mode, pressing Ctrl+C in the client console terminates both PBVR Client
and PBVR Server. Just before the termination, PBVR Client and Server will synchronize their
time steps. However, PBVR Client ignores pressing Ctrl+C whenever the client-server
communications are interrupted with the Stop button in the Time Panel.

6.2.2 Forced Termination
If PBVR Server is terminated other than by pressing Ctrl+C in PBVR Client’s console, PBVR
Client becomes stuck and cannot be terminated with Ctrl+C. Furthermore, even if Ctrl+C is
pressed to terminate PBVR Client, both PBVR Client and Server can become stuck. This can
happen if the time step is not updated due to heavy particle generation processes or some
other reason. In this case, obtain the process IDs of PBVR Client and PBVR Server using the
ps command in the console, and then force them to quit with the kill command as follows:

[Force the termination of a PBVR Client process]
$ ps -C pbvr_client
 PID TTY TIME CMD
19582 pts/6 00:00:00 pbvr_client
$ kill -9 19582

[Force the termination of a PBVR Server process】
$ ps -C pbvr_server
 PID TTY TIME CMD
19539 pts/5 00:00:00 pbvr_server
$ kill -9 19539

 78

6.3 Using the PBVR Client GUI
The client program after startup not only displays the visualization result, but also provides a
GUI that can interactively control visualization parameters.

6.3.1 Viewer
As shown in Figure6.3-1, Viewer renders the rendering result of particle data.

Figure6.3-1 Viewer

[Operations]
Rotation: Dragging left with the mouse
Translation: Dragging right with the mouse
Zoom: Shift + left-dragging, or dragging while pressing the mouse wheel
Reset: Home button (fn + left arrow on Macs)

[Display]

 79

time step: Time step for the data displayed
fps: Frame rate (frame/sec)

[Tool bar]

 Zoom in/out.

 Translations.

 Get keyframe/delete keyframe/play keyframe

animation.

 80

6.3.2 Tool Bar
Various functions of the client program are selected from the toolbar. The “File” tab controls
the input and output of the visualization parameter file and transfer function.
The visualization parameter means a group of parameters that can be set by the client, such
as viewer resolution, particle density, particle number limit, input volume data file name on the
server (PFI file or PFL file), transfer function, etc. The visualization parameter file is a file in
which they are described in the tag format.
The "File" tab and its functions are shown below.

Figure 6.3-2 File tab

• Import Parameters specifies the visualization parameter file to be input.
• Export Parameters outputs the visualization parameter file.
• Import Transfer Functions specifies the input transfer function file.
• Export Transfer Functions outputs a transfer function file.

The "Window" tab and its functions are shown below.

Figure 6.3-3 Window tab

• Animation Control displays a video creation panel.
• Coordinates displays a coordinates editor.
• Filter Information displays the input volume data property.
• Legend Option displays a legend panel for control the legend bar.
• System Status displays system property.
• Render Options controls rendering options.
• Time Controls displays a time step control panel.
• Volume Transform specifies geometry transformation for a rendering object.

 81

• Revert to Default Layout returns the layout of GUI when this application starts.
• Particle Selector displays a particle panel.
• Transfer Function Editor displays a transfer function editor.
• Viewer Controls displays a viewer control panel.

 82

6.3.2.1 FilterInfo
The Filter Info panel displays information about the input filtered volume data.

Figure 6.3-4 FilterInfo

• Vector number displays the number of variables consisting of the volume data.
• All Elements displays the number of elements consisting of the volume data.
• Sub Volume displays the number of sub-volume separated by the filter program.
• Element Type displays the type of element (Table4.7-1) consisting of the volume data.
• All Nodes displays the number of nodes of the volume data.
• Step Number displays the number of time steps.
• File Type displays the volume decomposition type (4.3).
• 3D Extent displays the min-max X-Y-Z coordinates of the volume data.

 83

System Status

Figure 6.3-5 System status

• CPU Memory displays the system memory usage in megabytes.
• Displayed Particles displays the number of rendering particles.
• Filter Parameter File displays the name of input volume data.
• Step Interval specifies minimum of a time step update interval by [msec]. This is used to

lengthen the update interval for time steps that are too short.
• Transfer Function Edit _ Hold till complete holds update of the transfer function till time step

progress completed.

 84

Render Options

Figure 6.3-6 Render Options

Density specifies the particle density related to the depth of the image.
Limit specifies the upper limit of the number of particles generated by the server program in
order to prevent the number of particles from exploding due to incorrect transfer function
specification. If the number of particles exceeds this upper limit, the server program
automatically reduces the image quality and adjusts so that the number of particles falls within
this upper limit.
Data-Size Limit specifies the upper limit of the particle data size using [GB] generated by the
server program in order to avoid explosion of the number of particles due to incorrect transfer
function specification. If the particle data size exceeds this upper limit, particle generation is
forced to stop.
Resolution specifies the viewer’s resolution.

 85

6.3.2.2 Volume Transform

Figure 6.3-7 Volume Transform

• Rotation specifies the rotation angle (degree) about the x-, y-, and z-axis of the object.
• Translation specifies the translation of the object in the x, y and z directions.
• Scale specifies the scale rate of the object.

 86

6.3.3 Transfer Function Editor
The transfer function editor enables to create transfer functions which assign the colors and
opacity to physical values. In a standard rendering of a volume, a transfer function is defined
with only one physical quantity. In contrast, PBVR allows for multi-dimensional transfer
functions. It has the following three features:

1) It assigns a parameter to color and, independently, a parameter to opacity.
2) It defines both color and opacity with an arbitrary function of the X-, Y-, and Z-coordinates

and parameters q1, q2, q3, ….
3) It algebraically synthesizes a multi-dimensional transfer function from one-dimensional

transfer functions that are defined by color functions C1, C2, … and opacity functions O1,
O2, ….

Figure 6.3-8 Transfer Function Editor

[Operations]

Scale change in histogram: Drag the mouse up/down in the histogram.

• Number Transfer Functions specifies the maximum number of transfer functions that can be

created.
• Color Function category specifies the color functions and its argument which is synthesized

 87

by the physical values.
• Opacity Function category specifies the opacity functions and its argument which is

synthesized by the physical values.
• Color Map category edits the color functions.
• Opacity Map category edits the opacity functions.
• Reset button returns the transfer functions to initial state.
• Apply button sends the transfer function to the server program.
• Export button saves the transfer function file with same format of “-pa” option.
• Import button reads the transfer function file.

[Available operators for algebraic equations]
+, -, *, /, ^, sin(), cos(), tan(), sqrt(), log(), exp()

 88

6.3.3.1 Color Map Specification

Figure 6.3-9 Top: Color Function category, bottom: Color Map category

[Color Function category]
• Synthesizer specifies the synthesis of the color function of C1 to C [N]. *1
• Function spin button selects the color function of C1 to C [N] for edit its argument.
• The button surrounded by red dotted line opens Color Function Editor which enables to

synthesize the physical values as an argument of C1 to C [N].

[Color Map category]
• User Defined Range Min:Max specifies the minimum and maximum range of the color

function which is assigned to the synthesized physical value.
• Synth. Func. Range Min:Max displays the minimum and maximum values of the synthesized

physical value.
• Edit Color Map button opens Color Map Editor.
• Histogram displays a distribution of the synthesized physical value with the user defined range

min:max.
• If the Lock button surrounded by blue dotted line is pressed, it is prohibited to input for the

user defined range min:max and forced to apply the value of the synth. func. range min:max.

*1 [N] is the value of the limit number of the transfer function specified by Number of Transfer

Functions.

 89

 90

6.3.3.1.１. Color Function Editor

PBVR Client can define the arguments of the color functions C1 to C [N] using the algebraic
formula. In the Color Function Editor, the algebraic formula is synthesized by the physical
values. The names of the variables that can be used in the algebraic formula are shown below.
• Physical values：q1, q2, q3, .., qn.
• Coordinate values：X, Y, Z.

Figure 6.3-10 Color Function Editor

• Color Function List displays the created color functions.
• Function: C[N] = f(algebraic formula) displays a color function selected in Color Function

List and enables to edit the algebraic formula.
• Cancel button close this panel.
• Set button applies the edited algebraic formula to Color Function List.
• Save button applies the Color Function List to the transfer function
• Select button applies a color function of Color Function List to Function.

 91

6.3.3.1.２. Color Function Editor: Freeform Curve Edit Tab

In the Freeform Curve Edit tab of Color Map Editor, the color function can be created by the
free form curve.

Figure 6.3-11 Color Map Editor: freeform curve tab

• Color Palette consists of saturation on the horizontal axis and brightness on the vertical axis,
and these can be specified by the position of the cursor.

• The right side of the color palette is RGB bar and enables to specify the hue. Color Palette
reflects the hue specified in RGB bar.

• Reset button returns this tab to default state.

 92

• Undo button undo single action.
• Redo button redo single action.
• Save button applies created color function.
• Cancel button close this panel.

Blends the single color specified by the Color palette and the RGB bar with those from a
standard spectrum. This is done by dragging the mouse along the color box while pressing the
left mouse button. The blending ratio between the specified color and the color from the
standard spectrum is determined by the vertical position of the mouse within the box. For
example, if the mouse is traced across the upper edge of the color box from left to right, it is
painted completely by the specified color. If the mouse is traced across the middle of the color
box, the colors in the box are replaced with blended colors that are 50% of the original color
and 50% of the specified color.

 93

6.3.3.1.３. Color Map Editor: Expression Tab

In Expression Edit tab of Color Map Editor, the color functions can be created by algebraic
expressions.

Figure 6.3-12 Color Map Editor: Expression tab

• R describes the color function of the red component of the color by algebraic expression.
• G describes the color function of the green component of the color by algebraic expression.
• B describes the color function of the blue component of the color by algebraic expression.

A variable of the color function is x, and the domain and range of the color function are 0 to 1.

 94

6.3.3.1.４. Color Map Editor: Control Points Edit Tab

In Control Points Edit tab of Color Map Editor, the color functions can be created by control
points.

Figure 6.3-13 Color Map Editor: Control Points Edit Tab

• Point enables to specify the values of control points (up to 10). The domain is 0 to 1.
• Red enables to specify a red component value corresponding to the control point. The range

is 0 to 1.
• Green enables to specify a green component value corresponding to the control point. The

range is 0 to 1.
• Blue enables to specify a blue component value corresponding to the control point. The range

is 0 to 1.

Each control point is interpolated with a piecewise linear function.

 95

6.3.3.1.５. Color Map Editor: Predefined ColorMaps Tab

Predefined Color Maps tab of Color Map Editor provides the selection of predefined color
functions.

Figure 6.3-14 Color Map Editor: Predefined ColorMaps Tab

Default Colors: displays the list of the predefined color maps. The following templates are
available.
• Rainbow
• Blue-white-red
• Black-red-yellow-white
• Black-blue-violet--yellow-white
• Black-yellow-white

 96

• Blue-green-red
• Green-red-violet
• Green- blue--white
• HSV model
• Gray-scale
• Black
• White

 97

6.3.3.2 Opacity Map Specification

Figure 6.3-15 Top: Opacity Function category, bottom: Opacity Map category

[Opacity Function category]
• Synthesizer specifies the synthesis of the opacity function of O1 to O[N]. *1
• Function spin button selects the opacity function of O1 to O[N] for edit its argument.
• The button surrounded by red dotted line opens Opacity Function Editor which enables to

synthesize the physical values as an argument of O1 to O[N].

[Opacity Map category]
• Range Min:Max specifies the minimum and maximum range of O1 to O[N].
• Server Side Range (min:max) displays the minimum and maximum values of the synthesized

physical value
• Edit Color Map button opens Opacity Map Editor.

*1 [N] is the value of the limit number of the transfer function specified by Number of Transfer

Functions.

 98

6.3.3.2.１. Opacity Function Editor

PBVR Client can define the arguments of the opacity functions O1 to O [N] using the algebraic
formula. In the Opacity Function Editor, the algebraic formula is synthesized by the physical
values. The names of the variables that can be used in the algebraic formula are shown below.
• Physical values：q1, q2, q3, .., qn.
• Coordinate values：X, Y, Z.

Figure 6.3-16 Opacity Function Editor

• Opacity Function List displays the created color functions.
• Function: O[N] = f(algebraic formula) displays a color function selected in Opacity Function

List and enables to edit the algebraic formula.
• Cancel button close this panel.
• Set button applies the edited algebraic formula to Opacity Function List.
• Save button applies the Opacity Function List to the transfer function
• Select button applies a color function of Opacity Function List to Function.

 99

6.3.3.2.２. Opacity Map Editor: Freeform Curve Tab

In the Freeform Curve Edit tab of Opacity Map Editor, the opacity function can be created by
the free form curve.

Figure 6.3-17 Opacity Map Editor: Freeform Curve Tab

• Reset button returns this tab to default state.
• Undo button undo single action.
• Redo button redo single action.
• Save button applies created color function.
• Cancel button close this panel.

In drawing the opacity function, a free-form curve can be drawn by left-dragging with the
mouse and a linear interpolation line between two points can be drawn by right-click.

 100

6.3.3.2.３. Opacity Map Editor: Opacity Expression Tab

In Expression Edit tab of Opacity Map Editor, the opacity functions can be created by algebraic
expressions.

Figure 6.3-18 Opacity Map Editor: Opacity Expression Tab

• O: describes the color function of the blue component of the color by algebraic expression.

A variable of the opacity function is x, and the domain and range of the opacity function are 0
to 1.

 101

6.3.3.2.４. Opacity Map Editor: Control Point Editor Tab

In Control Points Edit tab of Opacity Map Editor, the opacity functions can be created by control
points.

Figure 6.3-19 Opacity Map Editor: Control Point Editor Tab

• Point enables to specify the values of control points (up to 10). The domain is 0 to 1.
• Opacity enables to specify the opacity value corresponding to the control point. The range is

0 to 1.

Each control point is interpolated with a piecewise linear function.

 102

6.3.3.3 Function Editor
Table 6.3-1 lists the built-in math operations available in the function editors. They can be used
for the overall transfer functions, the parameters, and for the color and opacity curves.

Table 6.3-1 Math operations available in function editors

Math operation In function editors
+ +
- -
× *
/ /
sin sin(x)
cos cos(x)
tan tan(x)
log log(x)
exp exp(x)
square root sqrt(x)
power x^y

When arithmetic processing by the function editor produces NaN, PBVR outputs an error
message and stops the drawing process.

 103

6.3.4 Time panel
Figure6.3-20 shows Time panel, which specifies the time steps for the visualization. Each
widget works as described below.

Figure6.3-20 Time panel

• Progress expresses the current time step as a percentage.
• Time step specifies the time step of the data to be rendered.
• Min Time specifies the minimum time step for the ROI.
• Max Time specifies the maximum time step for the ROI.
• Start/Stop starts/stops communications between PBVR Client and PBVR Server.

 104

6.3.5 Particle and Polygon Composition
CS-PBVR supports composition of the volume rendering and polygon rendering. Figure6.3-21
shows Particle panel, which is used to integrate multiple particle datasets. Each widget works
as described below.

Figure6.3-21 Particle panel. Left: particle selection mode, right: polygon selection mode.

Display Particle category shows a list of particle and polygon datasets. The particle is sent
from PBVR Server, or is loaded from local files (maximum 5 files). The polygon is loaded from
local files (maximum 5 files).

Particle panel supports STL format polygon data. This function can process STL files that
are divided into one file per time step according to the following naming convention.

prefix_*****.stl (***** means the number of time steps in a five-digit display.)
If the subpixel levels of the server particle data and local particle data is different, the server

particle’s subpixel level takes priority. In standalone mode, If multiple local particle data are to
be displayed and the sub-pixel level of each particle data is different, the sub-pixel level of the
later loaded particle data takes priority.

Keep Initial Step category specifies particle/polygon datasets, in which the initial step data
is displayed before the time series starts, when integrated particle datasets start from different
time steps. Keep Final Step category specifies particle/polygon datasets, in which the final
step data is displayed after the time series ends, when integrated particle datasets end at
different time steps.

 105

[Display Particle/ Keep Initial Step/ Keep Final Step category]
• Server check box is activated when a particle dataset from PBVR Server is integrated with

local particle data sets. This checkbox is not available in stand-alone mode.
• (Particle1)- (Particle5) check box are activated to integrate the particle datasets loaded from

local files. The checkbox is not available before particle datasets are loaded via Particle file
panel.

• (Polygon1)- (Polygon5) check boxes are activated to integrate the polygon datasets loaded
from local files. The checkbox is not available before polygon datasets are loaded via Particle
file panel.

Edit Particle category enables to add particle data or polygon from a local file on the client PC
to the list of (Particle1)- (Particle5), (Polygon1)- (Polygon5) and to save the integrated
particle data as the particle file.

[Edit Particle category]
• Item spin button selects the item from the list of (Particle1)- (Particle5), (Polygon1)-

(Polygon5) to add particle data.
• Particle Name text box enables to name the particle data and polygon read from the client

PC. If this description is omitted, the file name displayed in the Particle File column is used.
• Browse button opens the file dialogue to load the particle data and polygon. The path of

the loaded particle data and polygon file is displayed in the Particle File column. A path
containing a double-byte character string cannot be specified.

• Add button adds the particle data and polygon displayed in the Particle File column to the
item selected with the Item spin button. If you select an item that has already been added,
overwrite it with the particle data that was load later.

• Delete button deletes the particle data and polygon added to the item currently selected
with the Item spin button.

• Export button integrates the particle data in memory and outputs it to the file specified in
the Particle File column.

• Close button closes Particle panel.
• Polygon Option appears in case of that polygon is selected at Item spin button. It can

specify color and opacity of the polygon.

6.3.5.1 Example of volume and polygon composition
The following is an example of a composite the unstructured lattice data spx.inp and the

polygon spx.stl of its boundary shape included in the sample data. Specify the path of spx.inp
filtered by the -vin option when starting the server, and execute volume rendering on the client
(Figure 6.3-22 left). Next, in the Edit Particle category of the Particle Integration panel, select
Polygon from the Item spin box, and specify the path of spx.stl in Particle File. Next, specify

 106

the data name "spx.stl" in Particle Name, and set the color and opacity. Then, check spx.stl in
the Display Particle category (right side of Figure 6.3-22), and the boundary shape will be
synthesized (center of Figure 6.3-22).

Figure 6.3-22 Left: volume rendering result of spx.inp; Center: composite view of spx.inp
volume and boundary shapes; Right: settings of the Particle Integration panel in the

composite view.

6.3.5.2 Example of multi-time steps composition
The behavior of the particle integration is explained using Figure 6.3-23 (sever side: 1~4

time steps, client side:0~3). If the server checkbox and the particle checkboxes are checked,
all time steps are displayed as shown in Table 6.3-2. If the checkbox Keep Initial Step is
checked for the client particles, only the first time step is displayed, as shown in Table 6.3-3. If
Keep Final Step is checked for the client particles, only the final time step is displayed, as
shown in Table 6.3-4.

Figure 6.3-23 The behavior of the particle integration

Table 6.3-2 Particle datasets displayed by default.

 Step0 Step1 Step2 Step3 Step4

Server - S1 S2 S3 S4

Server
er
Client
er

time step

C0 C1 C2 C3

S1 S2 S3 S4

 107

Client C0 C1 C2 C3 -

Table 6.3-3 Particle datasets displayed with Keep Initial Step for the server particles.

 Step0 Step1 Step2 Step3 Step4

Server S1 S1 S2 S3 S4

Client C0 C1 C2 C3 -

Table 6.3-4 Particle datasets displayed with Keep Final Step for the client particles.

 Step0 Step1 Step2 Step3 Step4

Server - S1 S2 S3 S4

Client C0 C1 C2 C3 C3

 108

6.3.6 Image file production
In Animation Controls, PBVR Client saves image data for the Viewer in two modes, both of
which are played as a movie.

l Time series data mode

The images are saved as time series data in BMP format. The image data files are
converted and compressed into a movie file via free software, such as ImageMagic
and ffmpeg.

l Key frame animation mode

Geometrical information from an arbitrary time step is retained as a key frame. A
series of key frames can be played as a key frame animation.

Figure6.3-24 shows the Animation Control Panel. Each widget works as described

below.

Figure6.3-24 Animation Controls Panel

• Capture spin box turns image production off or on.
• Image File specifies a prefix for the image data files. The default name is “PBVR_image”.
• File specifies a key frame file that contains geometrical data. The default name is ./xform.dat.
• Interpolation specifies the number of frames used for linear interpolation of the geometry data

between two key frames in a key frame animation. The default value is 10.
• Total Key Frames shows the number of key frames stored in the current key frame animation.

It is initialized to 0, and incremented (or decremented) by pressing “x” (or “d”). It is initialized
to 0 again by pressing “D”.

• Total Animation Frames shows the number of total frames stored in the current key frame

 109

animation, which is calculated as
(Total Key Frames – 1) x Interpolation

6.3.6.1 Image production
 Image files are produced as follows.

1. Specify the prefix for the image files in image file.
2. Select “on” in the capture drop down menu.
3. A series of image files are saved at each time step.
4. Image production is stopped by selecting “off” in the capture drop down menu.

The image files are saved in the directory specified by the command line option “-iout”. If “-
iout” option is not specified, they are saved in the current directory “./”. The following shows
an example of image data files produced with the default prefix “PBVR_image”:

PBVR_image.00001.bmp
PBVR_image.00002.bmp

…

If the image files are produced from a key frame animation, which is explained later, the file
names are modified by adding “_k” after the prefix.

PBVR_image_k.00001.bmp
PBVR_image_k.00002.bmp

…

6.3.6.2 Key frame animation of a still image
A key frame animation of a still image, which is obtained by pressing Stop in the Time Panel,
is produced as follows.

[Capture key frames and save them in a file]

1) Specify a key frame file in file.
2) Activate the Viewer by clicking it.
3) Adjust the view and press “x” to store the geometry information for the view in

memory.
4) Repeat (3).
5) Press “M” (i.e., shift+m) to play the key frame animation.
6) If the contents of the key frame animation are satisfactory, press “S” (i.e., shift+s) to

save the geometry information as a series in the key frame file.

 110

[Play a key frame file]

1) Specify a key frame file in file.
2) Activate the Viewer by clicking it.
3) Press “L” (i.e., shift+f) to play the key frame animation stored in the key frame file.
4) Press “x” to add new key frames to the current key frame animation.

Table6.3-5 Keys used for controlling key frame animation

Key Function
x Add geometry information for the current view to the key

frame data in memory.
d Delete the last key frame.
D Delete all key frames.
M Play or pause the key frame data in memory.
S Save the key frame data in memory to a key frame file.
L Load a key frame file and play its key frame data

 111

6.3.6.3 Key frame animation of time series data
A key frame animation of time series data can be produced as follows.

1) By pressing “x” while time series data are being rendered, both geometry information

and a time step number are stored in memory.
2) Press “S” to save a series with geometry information and time step numbers in the key

frame file.
3) Press “F” to load a series with geometry information and time step numbers in the key

frame file and play a key frame animation. Here, if key frames are at unequal intervals,
then interpolation frames, which are specified in interpolation, are non-uniform in time.

Figure6.3-25 Key frame animation for time series data

In the example shown in Figure6.3-25, if there are 10 interpolation frames between key
frames, then 5 interpolation frames are assigned to the time steps 00002 and 00003 between
key frames 0 and 1. On the other hand, between key frames 1 and 2, 10 interpolation frames
are assigned to the time steps from 00004 to 00024. As a result, the time steps 00004,
00006, …, 00024 are shown in the key frame animation.

Key frame information
No. Time step number
0 00002
1 00004
2 00025
3 00035

00002,00003

00025,00026,00027～00034

00035～00044

00004,00006,00008～00024

Time series data

 112

6.3.6.4 Key frame file format
A key frame file contains binary data with the following format.

Type
Size

(bytes)
data

int 4 Time step number
float 4 rotation[0].x
float 4 rotation[0].y
float 4 rotation[0].z
float 4 rotation[1].x
float 4 rotation[1].y
float 4 rotation[1].z
float 4 rotation[2].x
float 4 rotation[2].y
float 4 rotation[2].z
float 4 translation.x
float 4 translation.y
float 4 translation.z
float 4 scaling.x
float 4 scaling.y
float 4 scaling.z

Figure6.3-26 Key frame file format

File format
Key frame data 1
Key frame data 2

:

 113

6.3.7 Legend panel
Figure6.3-27 shows the Legend panel. A legend is a bar showing how the values of a physical
quantity are rendered as a color in the visualization. Each widget works as described below.

Figure6.3-27 Legend panel

• Display Legend checkbox turns on or off of showing the legend.
• Caption text box enables to enter a caption string for the legend and the contents are reflected

by Set button.
• Color Function spin button selects the color map legend and the range.
• Layout Direction spin button selects the direction of the legend (vertical/horizontal).
• Intervals specifies the number of tick marks.
• Thickness in Division category specifies a thickness of the tick marks.
• Color in in Division category specifies a color of the tick marks.
• Thickness in Frameline category specifies the thickness of the frame border.
• Color in in Frameline category specifies a color of frame border.
Figure6.3-28 shows an example of legend.

 114

Figure6.3-28 Example of a legend

 115

6.3.8 Coordinate Panel
Figure6.3-29 shows the Coordinate panel. This panel is used to specify a coordinate
transformation for each axis. For example, you can change from Cartesian coordinates to
cylindrical coordinates.

Figure6.3-29 Coordinate panel

・ Coordinate 1 specifies a formula for the new X coordinate. Empty or blank means just "X", i.e.,

the Cartesian coordinate.
・ Coordinate 2 specifies a formula for the new Y coordinate. Empty or blank means just "Y", i.e.,

the Cartesian coordinate.
・ Coordinate 3 specifies a formula for the new Z coordinate. Empty or blank means just "Z", i.e.,

the Cartesian coordinate.
・ Rescale button rescales the viewer display using the maximum and minimum coordinate

values of data displayed so far.
・ Apply button sends a formula defined with this panel to the server.

The coordinate transformations are entered into the text boxes for coordinate axes 1–3.
Variables used are the Cartesian coordinates (X, Y, and Z), physical quantities (q1, q2, …, q9),
and time (T). The variables can be written in upper case (X, Y, Z, and T) or lower case (x, y, z,
and t). In addition, the operations allowed are the same as those used in the transfer function
editor (see Section 6.3.3.3). If a physical quantity specified does not exist, then 0 will be used.

 116

6.3.9 Viewer Control Panel
Figure6.3-30 shows the Viewer Control Panel, which specifies the properties of the viewer.
Each widget works as described below.

Figure6.3-30 Viewer control panel

・ Background specifies the background color of the viewer.
・ Font selects a font type and size of the character shown to a viewer

 117

7 An Example with the Sample Dataset

The following sections demonstrate the usage of PBVR for a sample dataset gt5d.tgz.

7.1 Filtering Process
Uncompress gt5d.tgz to extract the following files under the directory ./gt5d.

gt5d.fld: An AVS field file
co3d.dat: A coordinate data file
pd3d.dat: The variable 1
psid.dat: The variable 2
param.txt: Input parameters for PBVR Filter
demo.tf: A transfer function file for demonstration

Execute PBVR Filter with the following command (which invokes the OpenMP version).

$ filter ./ param.txt

The contents of param.txt are as follows:

in_dir=./gt5d
field_file=gt5d.fld
out_dir=./gt5d
out_prefix=case
start_step=0
end_step=4

The above example specifies the SPLIT file format (which is the default format), a single

sub-volume (without sub-volume decomposition), and the same directory for both input and
output. This filtering process generates the following files in the specified output directory.

case.pfi : A PFI file
case_YYYYYYY_ZZZZZZZ_connect.dat : An element configuration file
case_YYYYYYY_ZZZZZZZ_coord.dat : A node coordinate file
case_XXXXX_YYYYYYY_ZZZZZZZ.kvsml : A kvsml file
case_XXXXX_YYYYYYY_ZZZZZZZ_value.dat : A variable file

 118

7.2 Starting PBVR
The following is an example of connecting port 50000 of machineA to port 60000 of

machineB using ssh port forwarding and starting client and server programs on each machine.

Step1 [ssh portforwarding]
machineA> ssh -L 50000:localhost:60000 username@machineB

Step2 [Launching server program]
machineB> mpixec -n pbvr_server
first reading time[ms]:0
Server initialize done
Server bind done
Server listen done
Waiting for connection ...

Step3 [Launching client program] In this example, the client program reads the transfer
function file demo.tf at launching, used the Metropolis sampling for the particle generation,
and set phong shading as the shading parameters.

machineA> pbvr_client -S m -vin ./gt5d/case.pfi -shading P,0.6,0.6,0.6,30

Figure7.2-1 PBVR GUI

 119

7.3 Designing Transfer Functions
This section shows examples of visualizing gt5d.fld, using the multi-dimensional transfer
function that is produced with the advanced transfer function design capability of PBVR.
gt5d.fld contains structured grid volume data that consists of two variables.

7.3.1 Volume Rendering for a Single Variable
First, visualize the variable q1 by setting the transfer function t1 as shown in Figure7.3-1. In
this example, the transfer function is designed with the Transfer Function Editor. The left part
of the Transfer Function Editor shows the configuration for colors, while in the right part
shows the opacity. Notice that this configuration is the conventional volume rendering for a
single variable.

Figure7.3-1 Volume rendering result for the variable q1.

 Color Function SYNTHESIZER ：C1
 Opacity Function SYNTHESIZER ：O1
 Color Map Function：C1 = f(q1)
 Opacity Map Function：O1 = f(q1)

 120

7.3.2 Multivariate Volume Rendering
The next example shows the result of a multivariate volume rendering, in which the variables
q1 and q2 are synthesized as shown in Figure7.3-2. In this example, the colors are assigned
to the variable q1, while the opacity is assigned to the variable q2. The opacity map extracts
two torus surfaces, which are given by the iso-surfaces of the variable q2. The colors encode
the distribution of the q1 values in these iso-surfaces.

Figure7.3-2 Rendering a multivariate volume. The q1 values are color-mapped onto the iso-
surfaces of q2.

 Color Function SYNTHESIZER ：C1
 Opacity Function SYNTHESIZER ：O2
 Color Map Function：C1 = f(q1)
 Opacity Map Function：O2 = f(q1)

 121

7.3.3 Slicing Volumes
Figure7.3-3 shows an application of PBVR’s multivariate volume rendering after extracting a
slice. With PBVR, an arbitrary function can be used to design a transfer function. In this
example, the cylindrical surface (X2+Z2=const.) is extracted and the color of the variable q1 is
mapped onto it.

Figure7.3-3 Rendering after slicing the volume with PBVR’s multivariate volume rendering
capability.

 Color Function SYNTHESIZER ：C1
 Opacity Function SYNTHESIZER ：O3
 Color Map Function：C1 = f(q1)
 Opacity Map Function：O3 = f(sqrt(X2+Z2))
 Opacity Range Min：180
 Opacity Range Max：380

 122

7.3.4 Synthesis of Transfer Functions
This section explains how to synthesize transfer functions in PBVR. Figure7.3-4 shows a

transfer function O4, whose opacity function makes the region Y > 0 transparent. By
synthesizing the previously described transfer functions O1, O2, and O3 together with a new
transfer function O4 as (O1 + O2) * O4 + O3, the individually extracted sub-regions can
undergo a flexible composition using arithmetic operations. In this example, the colors of t2
and O3 are set to (R, G, B) = (0, 0, 0), while the color of O4 is set to (R, G, B) = (1, 1, 1). In the
above synthesis equation, the final colors are the rainbow color map defined for O1. On the
other hand, the opacity of O4 is multiplied by the sum of O1 and O2 in order to extract the
lower half region (Y < 0) of O1 and O2. Then, the resulting region is synthesized with the
cylindrical surface given by O3.
As demonstrated by these examples, PBVR’s ability to synthesize transfer functions is
powerful. It can extract an arbitrary region for each parameter and then use a series of
mathematical operations.

Figure7.3-4 Synthesizing transfer functions

 Color Function SYNTHESIZER ：(C1+C2)*C4+C3
 Opacity Function SYNTHESIZER ：(O1+O2)*O4+O3

 123

7.4 Integration of Particle Dataset
While the previous section illustrates a visualization using volume rendering, iso-surfaces, and
surface rendering via multi-dimensional transfer functions, a similar image composition can
also be achieved by integrating multiple particle datasets. This section gives an example of a
particle integration.

7.4.1 Saving Particle Datasets
Particle datasets are stored using the Particle File sub-panel in Particle panel. Figure7.4-1
shows an example using “Export Particle”. In this case, the following files are generated with
the prefix “p1”:

./particle/p1_XXXXX_YYYYYYY_ZZZZZZZ.kvsml
./particle/p1_XXXXX_YYYYYYY_ZZZZZZZ_colors.dat
./particle/p1_XXXXX_YYYYYYY_ZZZZZZZ_coords.dat
./particle/p1_XXXXX_YYYYYYY_ZZZZZZZ_normals.dat

Here, XXXXX is the time step, YYYYYYY is the sub-volume number, and ZZZZZZZ is the
number of sub-volumes. The files “colors”, “coords”, and “normal” contain the color,
coordinates, and normal vector of each particle, respectively. On hitting the Export button,
integrated particle data are stored in the above files. While saving, the Export button is de-
activated as shown in Figure7.4-2. Once the whole time series data have been saved, the
Export button becomes active again.

 124

Figure7.4-1 Particle File panel (Export is active)

Figure7.4-2 Particle File panel (Export is inactive)

 125

7.4.2 Loading Particle Dataset
In the following example, three particle datasets, p1, p2, and p3, which correspond to the
images in Figure7.3-1 to Figure7.3-3, are loaded and integrated. Here, PBVR Client is
launched in stand-alone mode with the following command:

$ pbvr_client -shading P,0.6,0.6,0.6,30 –pin1 ./particle/p1 –pin2 ./particle/p2 –pin3 ./particle/p3

p1–p3 are listed in the Particle panel. After turning on the Display particle checkbox for p1,
the volume rendering is shown, as illustrated in Figure7.4-3. In addition, by turning on the
Display particle checkboxes for p2 and p3, all three particle datasets are integrated, as in
Figure7.4-4. The integrated particle data can be stored as a single particle dataset via Particle
File. Note that to obtain images that are correctly integrated, all the particle datasets must be
generated using the same particle densities and particle limits, which are specified by the
command line options -pd and -plimit.

 126

Figure7.4-3 Particle dataset p1

Figure7.4-4 Integration of p1, p2, and p3

 127

7.5 Saving Results
After designing the transfer function, PBVR can save the resulting image and parameters in
the following three ways:

1) Image output (Section 6.3.6)
To save the results as images, select “on” in the capture drop-down list in the Animation
panel. Bitmap image files (PBVR_image.xxxxx.bmp) are generated.

2) Transfer function file (Section 6.3.3)
To generate a transfer function file, enter a file name for the transfer function in the File
Path of the Transfer Function Editor and press Export File. This file can subsequently
be loaded using Import File.

3) Visualization parameter file (Section 4.4)
All the visualization parameters including the transfer function can be exported and used
to run PBVR Server in batch mode. Open the File panel from the Main panel, specify
the parameter filename and press Export FILE.

7.6 Batch Mode Example
This section shows how to run PBVR Server in batch mode using the visualization parameter
file exported in the previous section. This mode is used for massively parallel processing on a
supercomputer. In addition, it is also useful for high-speed rendering of time series data with
PBVR Client in stand-alone mode, because it eliminates the latency due to particle generation
and particle data transfer.

[Step 1] Launch PBVR Server (of OpenMP version) in batch mode

$ pbvr_server –B –vin ./gt5d/case.pfi –pout ./output/case -S m -pa ./param.in

[Step 2] Launch PBVR in stand-alone mode

$ pbvr_client –pin1 ./output/case -shading P,0.6,0.6,0.6,30

