

Remote Visualization Tool PBVR (v1.09)

User Guide

March 2017

Japan Atomic Energy Agency

Center for Computational Science & e-Systems

 i

Revision Record
Version
number

Date
revised

Revised
chapter

Revised content

1.04 2015.3.31 - Release
1.05 2015.5.18 5.2 Parameter file function is added on Server
 5.4.2 File button is added on MainPanel
 5.4.6 Particle data output function is added
1.06a 2015.10.30 5.4.2 CROP panel is enabled for Mac
 5.4.3 Histogram function is added on Transfer

Function Editor
 5.4.5 Image file production function is updated (file

output directory, key frame animation)
1.07 2016.2.1 1.2 ICEX and VTK library are added to the

platform list
 2 The package is updated including serial

versions and PBVR Filter for VTK is added
 3.4 Data formats and parameter files are

extended including STL, PLOT3D, and VTK
 4.2 A new command line option “-pd” is added,

“-plimit” is modified, and “-sl” is removed
 5.2 A new command line option “-pd” is added,

“-plimit” is modified, “-sl” is removed, and
“-pin” is extended up to “-pin10”

 5.4.5 Particle panel is added
 6.4 An example of particle integration is added
1.071 2016.2.24 2 The package is updated. Compilation and

installation is changed.
 5.4.2 Transfer Function Editor, Particle Panel and

Animation Control Panel buttons are added to
Main Panel.

1.09 2017.3.2 4.2 New command line options “-Bs”, “-Be” and
“-Bd” are added.

 4.2.1 A usage of command line option “-vin” is
extended for multiple pfi files.

 4.2.2 Added about processing of distributed files.

 ii

 5.2 - Number of panels that opened when client
started is changed.

- Command line option “-vin” is extended for
multiple pfi files.

 5.4.2 - Following three buttons are added on
MainPanel. “Transfer Function Editor” ，

“Particle Panel”， and “Animation Control
Panel”.

- A checkbox “no-repeat sampling until
Transfer Functions be edited” is added on
MainPanel, and following three buttons are
added on MainPanel. “Legend Panel”,
“Coordinate Panel”, and “Viewer Control
Panel”.

- Display Particle Number is added.
 5.4.3 “Transfer Function Editor” is activated from

MainPanel, and close button is added.
 5.4.3.3 An action when NaN appears by the

arithmetic processing of function editor is
added.

 5.4.5 “Particle panel” is activated from MainPanel,
and close button is added.

 5.4.6 “Animation Control Panel” is activated from
MainPanel, and close button is added.

 5.4.7 “Legend panel” is added.
 5.4.8 “Coordinate panel” is added.
 5.4.9 “Viewer Control panel” is added.

 iii

Table of Contents

1 Introduction .. 5

1.1 Overview ... 5
1.2 System Requirements .. 6

2 Installation .. 8

2.1 Installation of Prebuilt Binaries ... 8
2.1.1 PBVR Filter ... 8
2.1.2 PBVR Server .. 10
2.1.3 PBVR Client ... 10

2.2 Installation from Source Code .. 11
2.2.1 Installation in Linux and Mac .. 13
2.2.2 Installation in Windows ... 13

3 PBVR Filter ... 15

3.1 Overview ... 15
3.2 Data Decomposition Model .. 15
3.3 Launching PBVR Filter ... 17

3.3.1 Launching VTK supported PBVR Filter .. 17
3.4 File Formats .. 18

3.4.1 Input Data Format .. 18
3.4.2 Endian .. 19
3.4.3 Filter Output Information File (.pfi) .. 20
3.4.4 SPLIT File Format .. 22
3.4.5 Sub-volume Aggregate Format .. 26
3.4.6 Step Aggregate Format .. 29

3.5 Parameter File .. 33
3.5.1 PLOT3D configuration file .. 35

3.6 MPI Parallel Processing ... 35
3.7 Execution in Staging Environment of K computer .. 36

3.7.1 Execution Shell Script and Parameter File ... 37
3.7.2 Input/Output Files and Directories .. 38

3.8 Unstructured Grid Data with Mixed Elements ... 39

4 PBVR Server ... 41

4.1 Overview ... 41
4.2 Launching PBVR Server ... 41

4.2.1 Launching PBVR Server in Batch Mode .. 42

 iv

4.2.2 Processing of Distributed Files ... 43
4.2.3 Launching PBVR Server in Client-Server Mode ... 43
4.2.4 Connecting Client and Server via Socket Communication 44

5 PBVR Client .. 49

5.1 Overview ... 49
5.2 Launching PBVR Client .. 49
5.3 Terminating PBVR .. 52

5.3.1 Standard Termination ... 52
5.3.2 Forced Termination .. 52

5.4 Using PBVR Client GUI .. 53
5.4.1 Viewer .. 53
5.4.2 Main Panel ... 54
5.4.3 Transfer Function Editor ... 59
5.4.4 Time panel .. 69
5.4.5 Particle panel .. 70
5.4.6 Image file production .. 72
5.4.7 Legend panel .. 78
5.4.8 Coordinate panel .. 80
5.4.9 Viewer control panel ... 81

6 An Example with the Sample Dataset .. 82

6.1 Filtering Process ... 82
6.2 Starting PBVR .. 83
6.3 Designing Transfer Functions ... 85

6.3.1 Volume Rendering for a Single Variable .. 85
6.3.2 Multivariate Volume Rendering .. 86
6.3.3 Slicing Volumes .. 87
6.3.4 Synthesis of Transfer Functions ... 88

6.4 Integration of particle datasets ... 89
6.4.1 Save particle datasets .. 89
6.4.2 Load particle datasets .. 90

6.5 Saving Results .. 92
6.6 Example of Batch Mode ... 92

 5

1 Introduction

1.1 Overview
This document is a user guide for Particle Based Volume Rendering (PBVR), a remote
visualization system developed at the Center for Computational Science & e-Systems in
Japan Atomic Energy Agency. PBVR provides high-speed remote visualization of large-scale
volume data by making use of the KVS library, and by employing the particle-based rendering
algorithm from the Koyamada Visualization Laboratory in Kyoto University. PBVR consists of
the following three components.
1) PBVR Filter

PBVR Filter reads volume data and divides it into sub-volumes, each of which becomes
the unit to be processed in parallel visualization.

2) PBVR Server
PBVR Server receives the sub-volumes and applies parallel visualization with PBVR’s
particle generation method.

3) PBVR Client
PBVR Client renders the particle data as images using Open GL.

Figure 1 The system configuration of PBVR

Windows / Linux / Mac�

SSH Tunnel�
�

PBVR
Server�

PBVR
Filter�PBVR

Client�

t=0
Volume
Data

t=1
Volume
Data

t=n
Volume
Data

�
�
�
�

t=0
Sub-

volume0

t=0
Sub-

volume1

t=0 Sub-
volume0
Particle
Data�

t=0 Sub-
volume0
VBO Data�

Rendering
(OpenGL)�

�  �
�

�  �
�

�  �
�

Client Machine

Server Machine

Socket
Master Node

Slave Nodes

 6

1.2 System Requirements
The system is verified for the following platforms and compilers.
●PBVR Filter

Platform Compiler Library
Linux 64bit gcc version 4.4.6 VTK*4
Mac 64bit *2 gcc version 4.8.2 VTK*4
Windows 64bit*3 Visual Studio 2013 VTK*4
K Computer Fujitsu Compiler
FX10 Fujitsu Compiler
ICEX Intel Compiler 15.0.3

●PBVR Server

Platform Compiler Library
Linux 64bit g++ version 4.4.6 KMATH_RANDOM, NTL *1
Mac 64bit *2 g++ version 4.8.2
Windows 64bit*3 Visual Studio 2013 Visual C++ runtime component
K Computer Fujitsu Compiler KMATH_RANDOM, NTL *1
FX10 Fujitsu Compiler KMATH_RANDOM, NTL *1
ICEX Intel Compiler 15.0.3 KMATH_RANDOM, NTL *1

●PBVR Client

Platform Compiler Library
Linux 64bit g++ version 4.4.6 OpenGL, GLUT
Mac 64bit *2 g++ version 4.8.2 OpenGL, GLUT
Windows 64bit*3 Visual Studio 2013 OpenGL, GLUT, Visual C++

runtime component

*1. KMATH_RANDOM is a high-performance pseudorandom number generator library,

which was developed at RIKEN Advanced Institute for Computational Science. Installing
KMATH_RANDOM further requires the NTL library.

*2. The current version was verified on Marverics, Yosemite, and El Capitan. On Macs,
OpenMP is not available for the default gcc that is shipped with Xcode. To use the load
modules or to compile the source code, install a newer version of gcc that works with
OpenMP. The prebuilt binaries were compiled with gcc48 installed through MacPorts. To
obtain this gcc version, run the following commands with root privilege in the terminal'.
port install gcc48
port select –set gcc mp-gcc48

*3. The current version was verified on Windows 7, 8.1, and 10. The Visual c++ runtime
component is needed on Windows without Visual Studie 2013.

 7

*4. VTK6.0 or later is needed for compiling PBVR Filter for VTK data.

 8

2 Installation

PBVR consists of a load module package and a source code package. The following sections
show how to install each package.

2.1 Installation of Prebuilt Binaries

2.1.1 PBVR Filter
PBVR Filter is implemented in C and is shipped with two versions. One is an MPI+OpenMP
version for massively parallel computing, and the other is an OpenMP version for thread
parallel computing. The following table lists the load modules of the load module package.
Choose the suitable load modules, and copy them to a directory that is specified in PATH
environment variable. When the copying operation finishes, the installation is complete.

Table 1 List of load modules for PBVR Filter.

Platform Parallelization Name of load module
Linux 64bit Serial pbvr_filter_linux

pbvr_filter_linux_vtk*2
OpenMP pbvr_filter_linux_omp

pbvr_filter_linux_omp_vtk*2
MPI+OpenMP pbvr_filter_linux_mpi_omp

pbvr_filter_linux_mpi_omp_vtk*2
Mac 64bit Serial pbvr_filter_mac

pbvr_filter_mac_vtk*2
OpenMP pbvr_filter_mac_omp

pbvr_filter_mac_omp_vtk*2
Windows 64bit Serial pbvr_filter.exe

pbvr_filter_vtk.exe
OpenMP pbvr_filter_omp.exe

pbvr_filter_omp_vtk.exe
K Computer *1 OpenMP pbvr_filter_k_omp

MPI+OpenMP pbvr_filter_k_mpi_omp
FX10 *1 OpenMP pbvr_filter_fx10_omp

MPI+OpenMP pbvr_filter_fx10_mpi_omp
ICEX OpenMP pbvr_filter_icex_omp

MPI+OpenMP pbvr_filter_icex_mpi_omp

*1. The load modules for supercomputers are used only in computing nodes. Therefore, for
login nodes and post-processing nodes with Linux, use the load modules built for Linux.

 9

*2. VTK library is needed for compiling PBVR Filter for VTK data.

2.1.1.1 Installation of PBVR Filter for VTK data
In compiling and installing PBVR Filter for VTK data, VTK6.0 or later is required. Refer the
VTK website (http://www.vtk.org/) for the installation of the VTK library. In the installation, the
following options should be chosen on CMake-gui.
1) turn on BUILD_SHARED_LIBS option.
2) Choose “Release” for CMAKE_BUILD_TYPE option.
3) Set the VTK installation directory to CMAKE_INSTALL_PREFIX.
On each environment, PBVR Filter is compiled as follows.

Installation in Linux and Mac
Execute the following compilation commands.

$ export VTK_VERSION=n.n

$ export VTK_LIB_PATH=/usr/local/lib
$ export VTK_INCLUDE_PATH=/usr/local/include/vtk-n.n
$ make -f makefile.linux vtk

Here, n.n denotes the version of the VTK library , and each path should be modified depending on
the VTK installation directory.

Installation in Windows
Set the following environment variables with
Control Panel -> System -> Property -> Environment.

Variable Value

VTK_LIB d:¥environments¥VTK¥lib
VTK_VERSION n.n
VTK_INCLUDE_PATH d:¥environments¥VTK¥include¥vtk-n.n

Here, n.n denotes the version of the VTK library , and each path should be modified depending on
the VTK installation directory.

 10

2.1.2 PBVR Server
PBVR Server is implemented in C++ and is shipped in three versions, a serial processing
version, an OpenMP version for thread parallel computing, and an MPI+OpenMP version for
massively parallel computing. The following table lists the load modules of the load module
package. Choose the suitable load modules, and copy them to a directory that is specified in
PATH environment variable. When the copying operation finishes, the installation is
complete.

Table 2 List of load modules for PBVR Server

Platform Parallelization Name of load module
Linux 64bit Serial pbvr_server_linux

OpenMP pbvr_server_linux_omp
MPI+OpenMP pbvr_server_linux_mpi_omp

Mac 64bit Serial pbvr_server_mac
OpenMP pbvr_server_mac_omp

Windows 64bit Serial pbvr_server.exe
OpenMP pbvr_server_omp.exe

K Computer *1 OpenMP pbvr_server_k_omp
MPI+OpenMP pbvr_server_k_mpi_omp

FX10 *1 OpenMP pbvr_server_fx10_omp
MPI+OpenMP pbvr_server_fx10_mpi_omp

ICEX OpenMP pbvr_server_icex_omp
MPI+OpenMP pbvr_server_icex_mpi_omp

*1. The load modules for supercomputers are used only in computing nodes. Therefore, if
the login nodes and the post-processing nodes are on Linux servers, use the load
modules that are compiled for Linux.

2.1.3 PBVR Client
PBVR Client is implemented in C++ and makes use of OpenGL. The following table lists the
load modules stored in the client directory of the load module package. Choose the suitable
load modules, and copy them to a directory that is specified in PATH environment variable.

Table 2 List of load modules for PBVR Client

Platform Parallelization Name of load module
Linux 64bit pthread pbvr_client_linux
Mac 64bit pthread pbvr_client _mac
Windows 64bit *1 pthread pbvr_client.exe

*1. For the Windows version, copy also ‘glut32.dll’ to the destination directory.

 11

2.2 Installation from Source Code
Uncompress the source code package to an arbitrary directory and compile it using pbvr.conf
and Makefile in PBVR/ directory. The pbvr.conf specifies a setting of make and compile PVBR
Filter, PBVR Server, and PBVR Client. The source code package is composed as follows.

Table 3 Components of source code package

Directory・File Detail

PBVR/

 KMATH/ Pseudorandom number generator library KMATH

 KVS/ Visualization library KVS

 glui/ Widget library for GUI

 FunctionParser/ Function editor library

 Common/ Common library for protocol, communication and others

 Filter/ PBVR Filter programs

 Server/ PBVR Server programs

 Client/ PBVR Client programs

 arch/ Compilation setting files

 pbvr.conf *1 Configuration setting file

 Makefile *1 Make file for PBVR/ directory

*1. In Windows, VisualStudio solution file pbvr.sln is used instead of pbvr.conf and Makefile.

By changing values in pbvr.conf in the following table, specify the functions to install.

Table 4 List of variables of pbvr.conf

Variable Value Detail
PBVR_MACHINE String Compilation setting files under arch/
PBVR_MAKE_FILTER 0 or 1 Select 1 for support of PBVR Filter
PBVR_MAKE_CLIENT 0 or 1 Select 1 for support of PBVR Client
PBVR_MAKE_SERVER 0 or 1 Select 1 for support of PBVR Server

PBVR_SUPPORT_KMATH 0 or 1
Select 1 for support of KMATH
(Server only)*1

PBVR_SUPPORT_VTK 0 or 1
Select 1 for support of PBVR VTK
(Filter only)

*1. In Windows and Mac, KMATH is unavailable, and TynyMT is used.

For PBVR_MACHINE, specify the compilation setting file under arch/ directory listed in the
following table.

 12

Table 5 List of compilation setting files

Filename Detail
Makefile_machine_gcc Serial compilation using gcc
Makefile_machine_gcc_omp OpenMP compilation using gcc
Makefile_machine_gcc_mpi_omp MPI+OpenMP compilation using gcc
Makefile_machine_intel Serial compilation using intel
Makefile_machine_intel_omp OpenMP compilation using intel
Makefile_machine_intel_mpi_omp MPI+OpenMP compilation using intel
Makefile_machine_fujitsu Serial compilation using fujitsu
Makefile_machine_fujitsu_omp OpenMP compilation using fujitsu
Makefile_machine_fujitsu_mpi_omp MPI+OpenMP compilation using fujitsu
Makefile_machine_icex Serial compilation using icex
Makefile_machine_icex_omp OpenMP compilation using icex
Makefile_machine_icex_mpi_omp MPI+OpenMP compilation using icex

The following list shows the supported environments for the compilation setting files.

Table 6 List of supported environment

File name

Environments
Linux Mac ICEX FX10 K*2 K(Pre/Post)

Makefile_machine_gcc ◎ ◎ - - - ○

Makefile_machine_gcc_omp ◎ ◎ - - - ○

Makefile_machine_gcc_mpi_omp ◎ - - - - ○

Makefile_machine_intel ○ - - - - ○

Makefile_machine_intel_omp ○ - - - - ○

Makefile_machine_intel_mpi_omp ○ - - - - ○

Makefile_machine_fujitsu - - - ○ ○ -

Makefile_machine_fujitsu_omp - - - ○ ○ -

Makefile_machine_fujitsu_mpi_omp - - - ○ ○ -

Makefile_machine_icex - - ○ - - -

Makefile_machine_icex_omp - - ○ - - -

Makefile_machine_icex_mpi_omp - - ○ - - -

*1. ◎ means the support of PBVR Filter, Server, and Client. ○ means the support of PBVR Filter

and Server.

*2. Use Pre/Post node in case of Client/Server mode on K computer.
Installation

 13

2.2.1 Installation in Linux and Mac
In Linux and Mac, build the source code and install it as follws.
1) Edit pbvr.conf under PBVR/ directory depending on your environment.

The following example shows the variables for building OpenMP versions of PBVR
Client, PBVR Filter, and PBVR Server using gcc compiler.
#Example of pbvr.conf

PBVR_MACHINE=Makefile_machine_gcc_omp	

PBVR_MAKE_CLIENT=1	

PBVR_MAKE_FILTER=1	

PBVR_MAKE_SERVER=1	

PBVR_SUPPORT_KMATH=0

2) Compile under PBVR/ directory as follows.
$make
Following load modules are generated under PBVR/ directory.
PBVR Filter: Filter/pbvr_filter
PBVR Server: Server/pbvr_server
PBVR Client: Client/pbvr_client

3) Copy the generated load modules to an arbitrary directory that is specified in PATH
environment variable.

2.2.2 Installation in Windows
In Windows, uncompress the source code package and build the source code as follows.
1) Install GLUT

i) Download glut-3.7.6-bin_x64.zip(64bit) from the link below.
http://ktm11.eng.shizuoka.ac.jp/lesson/modeling.html

ii) Extract the following files:
glut.h
glut32.lib
glut32.dll

2) Extract server on a Windows machine that has Visual Studio 2013.
3) Open pbvr.sln with Visual Studio 2013.
4) Choose Release and x64 from the pull-down list as shown in Figure 2.

 14

Figure 2 Build configuration of Visual Studio 2013

5) Go to the menu Build > Build Solution.
The load module pbvr_filter.exe, pbvr_server.exe, and pbvr_client.exe are created under
¥¥x64¥Release.

 15

3 PBVR Filter

3.1 Overview
PBVR Filter is independent from the PBVR system. PBVR Filter divides time-series volume
data that will become the input of parallel processing in PBVR Server. In addition, PBVR Filter
generates Sub-volume data for the purpose of visualization. The data decomposition is based
on the octree model. PBVR Filter divides structured grid data and unstructured grids data into
user-specified octree regions in order to generate the input files of parallel processing by
PBVR Server.

3.2 Data Decomposition Model
As shown in Figure 3, the octree data structure divides each edge of a cuboid in half,
recursively. Therefore, each cuboid has eight child cuboids while each child cuboid has a
single parent cuboid.

Figure 3 Space partitioning with the octree data structure

 16

As shown in Figure 4, the boundaries of the child-cuboids are computed by dividing the sum
of the minimum and maximum coordinate values by two. Given a point in the domain, the
cuboid containing the point can be determined by comparing the coordinates of the vertex and
the boundaries.

Figure 4 Coordinates of the boundaries in the octree data structure.

 17

3.3 Launching PBVR Filter
The following examples show how to launch PBVR Filter. Note that PBVR Filter requires
parameters that are specified in a parameter file. The name of the parameter file should be
specified in the command line when launching PBVR Filter. When no parameter file name is
given or a non-existent file name is provided, the execution of PBVR Filter fails.
Examples:

Launch the MPI+OpenMP version of PBVR Filter with N processes:
$ mpiexec –n N filter param.txt

Launch the OpenMP version:
$ filter param.txt

*1. In both cases, the number of OpenMP threads is set in the environment variable
‘OMP_NUM_THREADS’.

3.3.1 Launching VTK supported PBVR Filter
Set environment variable depending on your environment in order to launch VTK supported
PBVR Filter.
Installation in Linux
Set the following variable.

$ export LD_LIBRARY_PATH=${VTK_LIB_PATH}:$LD_LIBRARY_PATH

Installation in Mac
Set the following variable.

$ export DYLD_LIBRARY_PATH=${VTK_LIB_PATH}:$DYLD_LIBRARY_PATH

Here, n.n denotes the version of the VTK library , and each path should be modified depending on
the VTK installation directory.

Installation in Windows
Set the following environment variables with
Control panel -> System -> Property -> Environment.

Variable Value
Path d:¥Program¥VTK6.3.0¥bin

The Path should be specified to the bin directory under the VTK installation directory.

 18

3.4 File Formats
This section describes the file formats that are read/written by PBVR Filter. All binary format
data in input/output files are given in single precision, without a header/footer, and in little
endian. Three file formats are available: the SPLIT format (that actually make use of kvsml
format), the sub-volume aggregate format, and the step aggregate format. (See Figure 5.)
The SPLIT format generates independent files for each time step, for each sub-volume.
However, in this format, the number of files grows explosively as the number of layers in
octree increases. This problem can be avoided by using either of the other two file formats.
The sub-volume aggregate format aggregates files at different time steps (but of the same
sub-volume) to a single file. Conversely, the step aggregate format aggregates files of
different sub-volumes (at the same time step) to a single file. The following sections explain
these three file formats in detail.

Figure 5 The output file formats available for PBVR Filter

3.4.1 Input Data Format
PBVR Filter can process the following data formats as input.
1) AVSFLD binary data*1
2) AVSUCD ascii and binary data*1

3) STL binary data*2
4) PLOT3D binary data*3
5) VTK Legacy binary data *4

*1. Refer the details of AVS data formats in the manual of AVS or at
http://www.cybernet.co.jp/avs /products/avsexpress/dataformat.html. AVSUCD binary
data with “data” format can be used. However, the geom and the data_geom formats
are not supported. 2D/3D elements in Table 8 and their mixed elements are supported.
*2. Refer the details of STL data formats at https://en.wikipedia.org/wiki
/STL_(file_format).
*3. Refer the details of PLOT3D data formats at http://ntrs.nasa.gov/archive/nasa
/casi.ntrs.nasa.gov/19900013774.pdf.
*4. Refer the details of VTK data formats at http://www.vtk.org/. PBVR Filter can

 19

process VTK Structured Points, VTK Structured Grid, VTK Rectilinear Grid, VTK
UnstructuredGrid, and VTKPolygonalData.

3.4.2 Endian
The binary files used in PBVR Filter are in little endian. On a big endian machine, if input data
files do not use the little endian format, conversion is necessary.

 20

3.4.3 Filter Output Information File (.pfi)
A .pfi file is a binary data file that summarizes the information of the input volume.
Total number of nodes (int)
Total number of elements (int)
Element type (int) *1
File type (int) *2
Number of files (int) *3
Number of components (int)
Beginning time step (int)
Ending time step (int)
Number of sub-volumes (int) *4
Minimum X-coordinate value of the entire 3D space (float)
Minimum Y-coordinate value of the entire 3D space (float)
Minimum Z-coordinate value of the entire 3D space (float)
Maximum X-coordinate value of the entire 3D space (float)
Maximum Y-coordinate value of the entire 3D space (float)
Maximum Z-coordinate value of the entire 3D space (float)
Number of nodes for sub-volume 1 (int)
Number of nodes for sub-volume 2 (int)
Number of nodes for sub-volume 3 (int)
 :
Number of nodes for sub-volume n (int)
Number of elements for sub-volume 1 (int)
Number of elements for sub-volume 2 (int)
Number of elements for sub-volume 3 (int)
 :
Number of elements for sub-volume n (int)
Minimum X-coordinate value of sub-volume 1 (float)
Minimum Y-coordinate value of sub-volume 1 (float)
Minimum Z-coordinate value of sub-volume 1 (float)
Maximum X-coordinate value of sub-volume 1 (float)
Maximum Y-coordinate value of sub-volume 1 (float)
Maximum Z-coordinate value of sub-volume 1 (float)
Minimum X-coordinate value of sub-volume 2 (float)
Minimum Y-coordinate value of sub-volume 2 (float)
Minimum Z-coordinate value of sub-volume 2 (float)
Maximum X-coordinate value of sub-volume 2 (float)
Maximum Y-coordinate value of sub-volume 2 (float)
Maximum Z-coordinate value of sub-volume 2 (float)
 :
Minimum X-coordinate value of sub-volume n (float)
Minimum Y-coordinate value of sub-volume n (float)
Minimum Z-coordinate value of sub-volume n (float)
Maximum X-coordinate value of sub-volume n (float)
Maximum Y-coordinate value of sub-volume n (float)

 21

Maximum Z-coordinate value of sub-volume n (float)
Minimum value of variable 1 for time step 1
Maximum value of variable 1 for time step 1
Minimum value of variable 2 for time step 1
Maximum value of variable 2 for time step 1
 :
Minimum value of variable N for time step 1
Maximum value of variable N for time step 1
 :
Minimum value of variable 1 for time step m
Maximum value of variable 1 for time step m
Minimum value of variable 2 for time step m
Maximum value of variable 2 for time step m
 :
Minimum value of variable N for time step m
Maximum value of variable N for time step m
*1. Element types are defined in Table 9.
*2. Set the int value to 0-2 in order to specify one of the following file formats.

0: SPLIT format
1: sub-volume aggregate format
2: step aggregate format

*3. The number of files, when the input file format is sub-volume aggregate format.
*4. The number of sub-volumes is 8n_layer. Examples follow.

n_layer = 0 : 1
n_layer = 1 : 8
n_layer = 2 : 64
n_layer = 3 : 512
n_layer = 4 : 4,096
n_layer = 5 : 32,768
n_layer = 6 : 262,144
n_layer = 7 : 2,097,152

 22

3.4.4 SPLIT File Format
When the SPLIT file format is used, two files are produced for each sub-volume. The first is
called an element configuration file. This file describes which of the nodes constitutes each
cell. The second is called a node coordinate file, which specifies the coordinates of the nodes.
In addition, each sub-volume gets another file for each time step. This file, which is called a
variable file, assigns the values of variables (physical quantities) to each node. All these three
types of files are formatted as a kvsml file. It is worth noting that the total number of files can
be calculated as follows:
The number of sub-volume × 2 + the number of sub-volume × the number of time steps × 2.
Example:

If n_layer is 7 and the number of time steps is 100, then the total number of files is
423,624,704.

3.4.4.1 File Name Convention
In PBVR, files in the SPLIT format have the following naming convention.

prefix_XXXXX_YYYYYYY_ZZZZZZZ.kvsml : kvsml file（ASCII format）
prefix_YYYYYYY_ZZZZZZZ_connect.dat : element configuration file (binary
format)
prefix_YYYYYYY_ZZZZZZZ_coord.dat : node coordinate file（binary format）
prefix_XXXXX_YYYYYYY_ZZZZZZZ_value.dat : variable file（binary format）

‘prefix’, ‘XXXXX’, ‘YYYYYYY’, and ‘ZZZZZZZ’ should be replaced with the following strings.
‘prefix’ : arbitrary string of characters that are allowed for a file name

 ‘XXXXX’ : number of steps（in 5 digits）
 ‘YYYYYYY’ : index for sub-volume (in 7 digits)
 ‘ZZZZZZZ’ : total number of sub-volumes（in 7 digits）

 23

3.4.4.2 kvsml File Format

<?xml version="1.0" ?>
<KVSML>
 <Object type="UnstructuredVolumeObject">
 <UnstructuredVolumeObject cell_type=" type of elements">
 <Node nnodes="number of nodes in the sub-volume">
 <Value veclen="number of variables">
 <DataArray type="float" file="prefix_XXXXX_YYYYYYY_ZZZZZZZ_value.dat" format="binary" />
 </Value>
 <Coord>
 <DataArray type="float" file=" prefix_YYYYYYY_ZZZZZZZ_coord.dat" format="binary" />
 </Coord>
 </Node>
 <Cell ncells="number of elements in the sub-volume">
 <Connection>
 <DataArray type="uint" file=" prefix_YYYYYYY_ZZZZZZZ_connect.dat" format="binary" />
 </Connection>
 </Cell>
 </UnstructuredVolumeObject>
 </Object>
</KVSML>

 24

3.4.4.3 Format of Element Configuration File
Node 1 of element 1
Node 2 of element 1
 :
Node n of element 1
Node 1 of element 2
Node 2 of element 2
 :
Node n of element 2
Node 1 of element 3
Node 2 of element 3
 :
Node n of element 3
 :
Node 1 of element N
Node 2 of element N
 :
Node n of element N

3.4.4.4 Format of Node Coordinate File
X-coordinate value of node 1
Y-coordinate value of node 1
Z-coordinate value of node 1
X-coordinate value of node 2
Y-coordinate value of node 2
Z-coordinate value of node 2
X-coordinate value of node 3
Y-coordinate value of node 3
Z-coordinate value of node 3
 :
 :
X-coordinate value of node m
Y-coordinate value of node m
Z-coordinate value of node m

 25

3.4.4.5 Variable File
Variable 1 of Node 1
Variable 1 of Node 2
Variable 1 of Node 3
 :
Variable 1 of Node n
Variable 2 of Node 1
Variable 2 of Node 2
Variable 2 of Node 3
 :
Variable 1 of Node n
Variable m of Node 1
Variable m of Node 2
Variable m of Node 3
 :
Variable m of Node n

 26

3.4.5 Sub-volume Aggregate Format
In sub-volume aggregate format, the information of element configuration, node

coordinates, and variables of all time steps are gathered in a single file for each sub-volume.
By specifying the ‘Number of file’ (which is explained in Section 3.5), one can aggregate the
information of several sub-volumes into arbitrary number of files from one to the number of
sub-volumes. (If n_layer is 7, then the number of files is 2,097,152.)

3.4.5.1 Naming Convention
In PBVR, files in the sub-volume aggregate format have the following naming convention.

prefix_YYYYYYY_ZZZZZZZ.dat (A binary file）

‘prefix’, ‘XXXXX’, ‘YYYYYYY’, and ‘ZZZZZZZ’ should be replaced with the following strings.
prefix : arbitrary string of characters that are allowed for a file name

 YYYYYYY : file number（in 7 digits）
ZZZZZZZ : total number of files（in 7 digits）

 27

3.4.5.2 File Format
Index of first sub-volume
Index of last sub-volume
Node 1 of element 1
Node 2 of element 1

:
Node n of element 1

:
Node 1 of element N
Node 2 of element N
 :
Node n of element N
X-coordinate value of node 1
Y-coordinate value of node 1
Z-coordinate value of node 1

:
X-coordinate value of node m
Y-coordinate value of node m
Z-coordinate value of node m

:
 :

:
 :
 :
 :

:
Node 1 of element 1
Node 2 of element 1
 :
Node n of element 1
 :
Node 1 of element N
Node 2 of element N

:
Node n of element N
X-coordinate value of node 1
Y-coordinate value of node 1
Z-coordinate value of node 1

:
X-coordinate value of node m-1
Y-coordinate value of node m-1
Z-coordinate value of node m-1
X-coordinate value of node m
Y-coordinate value of node m
Z-coordinate value of node m

Sub-volume 1

Node

coordinate

Element

configuration

Sub-volume n

Element

configuration

Sub-volume information

Node

coordinate

 28

Variable 1 of node 1 for time step 1
Variable 1 of node 2 for time step 1

:
Variable 1 of node n for time step 1
 :
Variable m of node 1 for time step 1
Variable m of node 2 for time step 1

:
Variable m of node n for time step 1
 :
 :
Variable 1 of node 1 for time step 2
Variable 1 of node 2 for time step 2
 :
Variable 1 of node n for time step 2
 :
Variable m of node 1 for time step 2
Variable m of node 2 for time step 2
 :
Variable m of node n for time step 2
 :
 :
 :
 :
Variable 1 of node 1 for time step N
Variable 1 of node 2 for time step N
 :
Variable 1 of node n for time step N
 :
Variable m of node 1 for time step N
Variable m of node 2 for time step N
 :
Variable m of node n for time step N
 :
 :
Variable 1 of node 1 for time step N
Variable 1 of node 2 for time step N
 :
Variable 1 of node n for time step N
 :
Variable m of node 1 for time step N
Variable m of node 2 for time step N
 :
Variable m of node n for time step N

Sub-volume unit

Sub-volume unit

Sub-volume unit

Step unit

Step unit

Sub-volume unit

 29

3.4.6 Step Aggregate Format
The step aggregate format is made up of by an element configuration file and a node
coordinate file. These two files contain the information of all the sub-volumes. A variable file is
produced for each step. Therefore, the total number of files becomes the number of steps + 2.

3.4.6.1 File Name
In PBVR, files in the step aggregate format have the following name convention.
prefix_connect.dat : element configuration file（binary format）
prefix_coord.dat : node coordinate file（binary format）
prefix_XXXXX_value.dat : variable file（binary format）

‘prefix’ and ‘XXXXX’ should be replaced with the following strings.
prefix : arbitrary string of characters that are allowed for a file name
XXXXX: number of steps（in 5 digits）

 30

3.4.6.2 Element Configuration File Format
Node 1 of element 1 for sub-volume 1
Node 2 of element 1 for sub-volume 1

:
Node n of element 1 for sub-volume 1
Node 1 of element 2 for sub-volume 1
Node 2 of element 2 for sub-volume 1

:
Node n of element 2 for sub-volume 1
Node 1 of element 3 for sub-volume 1
Node 2 of element 3 for sub-volume 1

:
Node n of element 3 for sub-volume 1
 :
Node 1 of element N for sub-volume 1
Node 2 of element N for sub-volume 1
 :
Node n of element N for sub-volume 1
 :
Node 1 of element 1 for sub-volume M
Node 2 of element 1 for sub-volume M
 :
Node n of element 1 for sub-volume M
Node 1 of element 2 for sub-volume M
Node 2 of element 2 for sub-volume M
 :
Node n of element 2 for sub-volume M
Node 1 of element 3 for sub-volume M
Node 2 of element 3 for sub-volume M
 :
Node n of element 3 for sub-volume M
 :
Node 1 of element N for sub-volume M
Node 2 of element N for sub-volume M
 :
Node n of element N for sub-volume M

Element
unit

Sub-volume
unit

 31

3.4.6.1 Node Coordinate File Format
X-coordinate of node 1 for sub-volume 1
Y-coordinate of node 1 for sub-volume 1
Z-coordinate of node 1 for sub-volume 1
X-coordinate of node 2 for sub-volume 1
Y-coordinate of node 2 for sub-volume 1
Z-coordinate of node 2 for sub-volume 1
X-coordinate of node 3 for sub-volume 1
Y-coordinate of node 3 for sub-volume 1
Z-coordinate of node 3 for sub-volume 1

:
:

X-coordinate of node m for sub-volume 1
Y-coordinate of node m for sub-volume 1
Z-coordinate of node m for sub-volume 1

:
:
:

X-coordinate of node 1 for sub-volume M
Y-coordinate of node 1 for sub-volume M
Z-coordinate of node 1 for sub-volume M
X-coordinate of node 2 for sub-volume M
Y-coordinate of node 2 for sub-volume M
Z-coordinate of node 2 for sub-volume M
X-coordinate of node 3 for sub-volume M
Y-coordinate of node 3 for sub-volume M
Z-coordinate of node 3 for sub-volume M

:
:

X-coordinate of node m for sub-volume M
Y-coordinate of node m for sub-volume M
Z-coordinate of node m for sub-volume M

Node unit

Sub-volume unit

 32

3.4.6.2 Variable File Format
Variable 1 of node 1 for sub-volume 1
Variable 1 of node 2 for sub-volume 1
Variable 1 of node 3 for sub-volume 1

:
Variable 1 of node n for sub-volume 1
Variable 2 of node 1 for sub-volume 1
Variable 2 of node 2 for sub-volume 1
Variable 2 of node 3 for sub-volume 1

:
Variable 2 of node n for sub-volume 1
Variable m of node 1 for sub-volume 1
Variable m of node 2 for sub-volume 1
Variable m of node 3 for sub-volume 1

:
Variable m of node n for sub-volume 1

:
:
:

Variable 1 of node 1 for sub-volume M
Variable 1 of node 2 for sub-volume M
Variable 1 of node 3 for sub-volume M

:
Variable 1 of node n for sub-volume M
Variable 2 of node 1 for sub-volume M
Variable 2 of node 2 for sub-volume M
Variable 2 of node 3 for sub-volume M

:
Variable 2 of node n for sub-volume M
Variable m of node 1 for sub-volume M
Variable m of node 2 for sub-volume M
Variable m of node 3 for sub-volume M

:
Variable m of node n for sub-volume M

Variable
unit

Sub-volume unit

 33

3.5 Parameter File
The parameter file is in ASCII format, and is commonly used for both PBVR Filter (for
AVSFLD/UCD, PLOT3D, and STL data) and PBVR Filter for VTK data. By specifying the file
name in the command line when provoking PBVR Filter, the parameters inside are set as
input to PBVR Filter. Table 6 lists the available parameters.

Table 7 List of PBVR Filter input parameters

Parameter name Parameter detail Default
value

Notes

in_dir Input file directory ‘.’ Directory path of input files *1
field_file AVSFLD file name - *2, *3, *4
stl_binary_file STL file name - *2
Plot3d_config_file PLOT3D configuration

file name
- *2, *3

vtk_file VTK file name - *2, *3, *5
vtk_in_prefix Prefix of time series

VTK data files
- *2, *3, *5

vtk_in_suffix Suffix of time series
VTK data files

- *2, *3, *5

ucd_inp AVSUCD file name - Ascii format*2
in_prefix Prefix of time series

AVSUCD data files
- Binary format*2

in_sufix Suffix of time series
AVSUCD data files

- Binary format*2

format Step number format
for time series data

“%05d”

out_dir Output file directory ‘.’ Directory path of output files
 *1

out_prefix Output file prefix ‘output.’
start_step Starting step number ‘1’ *6
end_step Ending step number ‘1’ *6
n_layer Number of octree

layer
‘0’ An integer from ‘0’ to ‘7’

output_type File format ‘0’ ‘0’: SPLIT format
‘1’: sub-volume aggregate
‘2’: step aggregate

 34

file_number Number of output files ‘0’ An integer greater than 0.
When set to ‘0’, the number of
sub-volume is used. Valid only
in Sub-volume aggregate file
format.

mpi_volume_div Number of MPI
parallelism in
sub-volume

‘1’ The total number of MPI
processes is given by
mpi_volume_div ×
mpi_step_div. *7

mpi_step_div Number of MPI
parallelism in time
step

‘1’ The total number of MPI
processes is given by
mpi_volume_div ×
mpi_step_div *7

mpi_div Configuration of 2D
MPI parallel
processing

‘2’ ‘0’: defined by mpi_volume_div’
and mpi_step_div.

‘1’: automatic with priority on
sub-volume decomposition.

‘2’: automatic with priority on
step decomposition.

Options 1 and 2 do not work
when mpi_volume_div and
mpi_step_div are set.

multi_elem_type Flag on mixed
element type
unstructured grid

‘0’ ‘0’: data with a single element
type
‘1’: data with multiple element
types

temp_delete Flag on temporary
files produced by
processing mixed
element data

‘1’ ‘0’: keep temporary files
‘1’: delete temporary file

*1. Directories can be specified either with an absolute path or a relative path, although tilde
(~) cannot be used as an abbreviation for the HOME directory.

*2. One of the following options, field_file, stl_binary_file, plot3d_config_file, vtk_file,
vtk_in_prefix(suffix), ucd_inp, and in_prefix(suffix) should be given.

*3. When input data is two dimensional or three dimensional structured grid data, the output
data is converted to unstructured grid data with linear quadrilateral or hexahedral
elements, respectively.

*4. Only the parameters ‘nstep’, ‘ndim’, ‘dim1’, ‘dim2’, ‘dim3’, ‘veclen’, ‘coord [123]’, and
‘variable’ are referred.

*5. Five VTK Legacy data formats (VTK Structured Points, VTK Structured Grid, VTK

 35

Rectilinear Grid, VTK UnstructuredGrid, and VTKPolygonalData) are automatically
recognized by PBVR Filter.

*6. Specified only for time series data.
*7. When ‘mpi_volume_div’ and ‘mpi_step_div’ are specified, an error occurs if the value of

‘mpi_volume_div’ × ‘mpi_step_div’ is not identical to the number of processes.

3.5.1 PLOT3D configuration file
PLOT3D data formats are described by a PLOT3D configuration file. Here, usebytecount
should be chosen to be 1 and 0 for Fortran and C binary data, respectively.

Parameter name Parameter detail Default value
coordinate_file_prefix Prefix of coordinate file -
coordinate_file_suffix Suffix of coordinate file -
coordinate_mode_precision Precision (float | double) double
coordinate_mode_usebytecount 1 for true, 0 for false true
coordinate_mode_endian Endian (little | big) little
coordinate_mode_iblanks 1 for true, 0 for false false
solution_file_prefix Prefix of solution file -
solution_file_suffix Suffix of solution file -
solution_mode_precision Precision (float | double) double
solution_mode_usebytecount 1 for true, 0 for false true
solution_mode_endian Endian (little | big) little
function_file_prefix Prefix of function file -
function_file_suffix Suffix of function file -
function_mode_precision Precision (float | double) double
function_mode_usebytecount 1 for true, 0 for false true
function_mode_endian Endian (little | big) little

3.6 MPI Parallel Processing
This section describes the ways of dividing the computation in MPI parallel processing. As an
example, consider processing data with 50 steps × 8 sub-volumes.

1) Partitioning the set of time steps first

l If the number of processes is equal to or less than the number of the time steps,
divide the time steps by the number of processes.
 Example:

Since 8 processes exist, each process treats 6 steps × 8 sub-volumes, or 7
steps × 8 sub-volumes.

l When the number of processes is larger than the number of time steps, each process
handles a single time step. The number of sub-volumes for each process is specified

 36

in the following manner. First, divide the number of processes by the number of time
steps. Then, divide by the quotient the number of sub-volumes.
 Example:

When 128 processes are used, PBVR Filter works with 50 × 2 = 100 processes
(with the residue of 28 processes), and each process treats 1 step × 4
sub-volumes.

2) Partitioning the set of sub-volumes first
l When the number of processes is equal to or less than the number sub-volumes,

divide all the sub-volumes by the number of processes.
 Example:

When 8 processes are used, each process treats 50 steps × 1 sub-volume.
l When the number of processes is larger than the number of sub-volumes, each

process handles a single sub-volume. The number of time steps for each process is
specified in the following manner. First, divide the number of processes by the
number of sub-volumes. Then, divide by the quotient the number of time-steps.
 Example:

When 128 processes are used, PBVR Filter program works with 8 × 16 = 128
processes (with the residue of 0 process), and each process treats 3 steps × 1
sub-volume or 2 steps × 1 sub-volume

3) Employing a parallelization that is more complex

l When the parallel processing number ‘mpi_volume_div’ and ‘mpi_step_div’ are
specified, an error occurs if ‘mpi_volume_div × mpi_step_div’ does not agree with the
number of processes..

3.7 Execution in Staging Environment of K computer
This section describes how to execute PBVR Filter in the staging environment on the K
computer. When launching PBVR Filter, the parameter file and staging parameters must be
consistent with each other. Depending on the output data format of PBVR Filter, multiple
processes may write to a single file. In such a case, the output location should be specified in
a shared domain on the local file system that is accessible from all the processes.

 37

3.7.1 Execution Shell Script and Parameter File

① Transfer the load module to the rank directory of each process.
② Transfer a parameter file to the rank directory of each process.
③ Transfer input data to the shared domain in the local file system.
④ Transfer output data from the shared domain to a directory in global file system.
⑤ Transfer log and error files from the rank directory to a directory in the global file system.
⑥ When launching the load module in the rank directory of each process, specify the

parameter file (which lies in the rank directory of each process) in the command line
argument.

#!/bin/bash	-x	

#	

#PJM	--rsc-list	"elapse=01:00:00"	

#PJM	--rsc-list	"node=64"	

#PJM	--rsc-list	"rscgrp=small"	

#PJM	--stg-transfiles	all	

#PJM	--mpi	"proc=64"	

#PJM	--mpi	"use-rankdir"	 	 	 	 #Use	rank	directory	

#PJM	--stgin		"rank=*	./filter													%r:./"	 #Stage	in	for	load	module

………①	 	

#PJM	--stgin		"rank=*	./param.txt										%r:./"		 #Stage	in	for	file………

…………②	

#PJM	--stgin		"rank=0	/data/ucd/ucd*.dat			0:../"	 #Stage	in	for	shared	file

…………③	

#PJM	--stgout	"rank=*	%r:../output*.dat							./"		 #Stage	out	for	resulting	

file……④	

#PJM	--stgout	"rank=*	%r:./pbvr_filter.*		./LOG/"	 #Stage	out	for	file……

……………⑤	

#PJM	-S	

	

.	/work/system/Env_base	

	

export	PARALLEL=8	

export	OMP_NUM_THREADS=8	

	

mpiexec	-n	64	lpgparm	-p	4MB	-s	4MB	-d	4MB	-h	4MB	-t	4MB	filter	param.txt	 	 …

……⑥	

 38

⑦ Specify the path for input data files. (The path should be provided as a relative path. The
above sample reads input data from a shared domain.)

⑧ Specify the path for output data file. (The path should be given as a relative path. The
above sample writes output data to a rank directory for each process by using of SPLIT
file format.)

⑨ Specify an output file format. (The above sample uses the SPLIT format.)

3.7.2 Input/Output Files and Directories
This section describes the relation between input/output files treated in PBVR Filter and
directories in the staging environment. Output data in the SPLIT format can be written in a
rank directory, while output data in the other formats requires a shared directory for data
aggregation.

Table 8 Table of input-output files and directories on K computer

I/O File type Rank directory Shared domain
Input Parameter file Yes *1 Yes

Input data Yes *2 Yes
Output

Output
data

SPLIT format Yes Yes
Step aggregate format No Yes
Sub-volume aggregate
format

No Yes

Log & error file Yes *3 No
*1. The parameter file is read only from rank 0.
*2. The size and number of the input files should not exceed the resource limit of the staging

environment (800 files/node, 14GB/node).
*3. The output directory is always a rank directory.

#	

in_dir=../	 	 	 …………⑦	

field_file=pd3d.fld	 	 	

out_prefix=case0	 	 	 	

out_dir=./	 	 	 …………⑧	

file_type=0	 	 	 …………⑨	

n_layer=3	

start_step=0	

end_step=511	

 39

3.8 Unstructured Grid Data with Mixed Elements
When unstructured grid data contains several element types, PBVR Filter firstly generates
UCD binary data for each element type, and then divides the UCD binary data with a single
element type into sub-volumes, which are read by the PBVR Server.
By setting the parameter ‘multi_element_type’ to ‘1’ in the parameter file, PBVR Filter
produces a sub-volume for each element type.

Output files are generated for each element type, and have file names with a 2 digit prefix

that represents the element type. The following list shows the names of the elements and the
corresponding prefix.

#	

in_dir=.	

in_prefix=MULTI	

in_suffix=.dat	

out_dir=.	

out_prefix=div	

out_prefix=.dat	

format=%03	

start_step=1	

end_step=20	

multi_element_type=1	

 40

Table 9 List of element types

Element name Element type code
Triangle Linear 2
Quadrilateral Linear 3
Tetrahedron Linear 4
Pyramid 5
Prism 6
Hexahedron Linear 7
Triangle Quadratic 9
Quadrilateral Quadratic 10
Tetrahedral Quadratic 11
Hexahedral Quadratic 14

When the input data with the above parameter file consists of linear tetrahedral elements

and quadratic tetrahedral elements, the following output files are generated.

Table 10 File names for mixed elements

Original mixed elements
data

 Linear
tetrahedral data

Quadratic
tetrahedral data

MULTI001.dat 04-div001_- 11-div001_-
MULTI002.dat 04-div002_- 11-div002_-
MULTI003.dat ⇒ 04-div003_- 11-div003_-
MULTI004.dat Decompose 04-div004_- 11-div004_-
MULTI005.dat 04-div005_- 11-div005_-
 ： ： ：
MULTI020.dat 04-div020_- 11-div020_-

 41

4 PBVR Server

4.1 Overview
PBVR Server reads sub-volume files, which are produced by PBVR Filter, and performs
parallel visualization with the PBVR technique to generate particle data as visualization
results.

4.2 Launching PBVR Server
PBVR can operate in supercomputers both in batch mode, which generates only particle data
in batch processing, and in client-server mode, which generates particle data in interactive
processing by connecting PBVR Client and PBVR Server via a socket communication.
Stand-alone processing on PCs or workstations is also possible by launching PBVR Client
and PBVR Server in the client-server mode on the same machine. The followings show how
to launch PBVR Server.

Examples:
Launch the MPI+OpenMP version, and use N processes
$ mpiexec -n N pbvr_server

Launch the OpenMP version
$ pbvr_server

*1. Since the MPI+OpenMP version of PBVR Server operates with master-slave MPI
processing, the number of process N should be specified by the number of slave
process + 1.

*2. In both processing modes, the number of OpenMP threads is set with
OMP_NUM_THREADS environment variable.

*3. In Windows, these commands should be launched from Visual Studio 2013 x64 Native
Tools command prompt.

Table 11 List of command line options for the PBVR Server program

Option Launch
mode

Possible
parameters

Default
parameters

Functionality

-h CS,B - - This shows the list of available
options and parameters

-B B - - To launch in the batch mode
-pa B File name - Visualization parameter file
-pd B Real

number
1.0 Particle density *2

 42

-S B u, m u Method for sampling particles
 u: uniform sampling
 m: metropolis sampling

-plimit B 1-99999999 1000000 Maximum number of particles *2
-vin B File name - Input volume data (a .pfi or .pfl file)

*2
-pout B File name ./ Name of the output particle data file

*3
-p CS Port number 60000 Port number for socket

communication
-viewer B 100-9999

×100-9999
620×620 Viewer resolution

-Bd B - - Create particle files separately
without aggregating the subvolumes

-Bs B Integer of 0 or
more

First step of
specified pfi
file group

First time step for visualizing

-Be B Integer of 0 or
more

Last step of
specified pfi
file group

Last time step for visualizing

*1. In launch mode, CS and B denote client-server mode and batch mode, respectively.
*2. If this option conflicts with the option in the parameter file specified with ‘–pa’, the latter

is ignored.
*3. This generates a set of particle data files with names

“[file name]_[time step]_[number of sub-volumes]_[sub-volume index].kvsml,”
where [file name] is the prefix specified with this option. If the prefix is omitted, the
prefix ’server’ will be inserted automatically.

4.2.1 Launching PBVR Server in Batch Mode
When the command line option ‘-B’ is given, PBVR Server is launched in batch mode. The
following example shows how to launch PBVR Server in the batch mode (for the
MPI+OpenMP version).

$ mpiexec -n 5 pbvr_server -B -vin ./data/case.pfi -pout ./output/case -pa ./param.in

In this example, the input data ./data/case.pfi is processed with the visualization parameter

file ./param.in to output the following particle data.

./output/case_XXXXX_YYYYYYY_ZZZZZZZ.kvsml

 43

XXXXX ：Number of steps（5 digit number）
YYYYYYY ：Index for the sub-volume（7 digit number）
ZZZZZZZ ：Total number of Sub-volumes（7 digit number）

Usually all of the subvolume for each time is integrated, so both YYYYYYY, ZZZZZZZ shall

be 1. If you want to output particle data for each of the subvolume without the integration,
command-line options '-Bd' must be specified the server startup of batch mode.

The visualization parameter file is specified with the command line option ‘-pa’. This file is
generated in client-server mode interactively. Large-scale data processing in the batch mode
is executed by using this file as it is, or with desirable modifications to the parameters.

4.2.2 Processing of Distributed Files
Multiple volume data files stored in distributed environments are integrated to visualize by

this system. The multiple volume data files are filtered one by one, and generate pfi files for
each volume data files. To specify two or more pfi files for an input volume data file, make the
pfl file that lists the pfi files, and specify the pfl file with the command line option '-vin'.

It is necessary to write "#PBVR PFI FILES" to the head of the pfl file. The pfi file names are
written from the second line of the pfl file, by absolute path or relative path of the pfl file. The
following example shows content of pfl file.

#PBVR PFI FILES
hex_filter_out/hex.pfi
hex2_filter_out/hex2.pfi

4.2.3 Launching PBVR Server in Client-Server Mode
When the command line option ‘-B’ is not specified, PBVR Server is launched in the
client-server mode. See the following example.

$ mpiexec -n 5 pbvr_server
first reading time[ms]:0
Server initialize done
Server bind done
Server listen done
Waiting for connection ...

When “Waiting for connection” appears as in the above example and PBVR Server waits
for a socket communications with PBVR Client, launch the PBVR Client in another terminal. In
the client-server mode, input volume data name should be given to PBVR Client rather than to
PBVR Server.

 44

The default port number for the socket communication is 60000. To change the port number,
use the command line option ‘-p’:

$mpiexec -n 5 pbvr_server -p 55555

4.2.4 Connecting Client and Server via Socket Communication
4.2.4.1 Local Connection
The following example shows how to launch both PBVR Client and PBVR Server on a single
machine ‘machineA’. In this example, they cooperate using the default port number 60000 of
‘machineA’.

Step 1 [Launch PBVR Server]

machineA> mpiexec -n 5 pbvr_server
Step 2 [Launch PBVR Client]

machineA> pbvr_client -vin filename

4.2.4.2 Remote Connection between Two Machines
The following example shows how to launch PBVR Client on a machine ‘machineA’ and
PBVR Server program on another machine ‘machineB’ where the two machines are located
at distant places. This example uses SSH port forwarding to connect the port 60000 of
‘machineA’ to the port 60000 of ‘machineB’. In this way, PBVR Server and Client on the two
machines cooperate through the default port number 60000. Once the SSH port forwarding is
established, the launching procedure is basically the same as that in stand-alone mode. In
Windows, SSH port forwarding can be setup by using a third-party application such as
TeraTerm or Putty.

Step1 [SSH port forwarding from machineA to machineB]

machineA> ssh -L 60000:localhost:60000 username@machineB
（Forwarding the 60000 port of machineA to the 60000 port of machineB）

Step2 [Launch PBVR Server]
machineB> mpiexec –n 5 pbvr_server

Step3 [Launch PBVR Client]
machineA> pbvr_client –vin filename

4.2.4.3 Remote Connection with Several Machines
This section provides an example of connecting PBVR Server and PBVR Client on two
remote machines ‘machineA’ and ‘machineB’ via ‘machineC’ for some reason, e.g. security.
Once the SSH port forwading is established, the launching method is basically the same as
the stand-alone mode, as wtih the two point remote concection mentioned before.

 45

Step1 [SSH port forwarding from machineA to machineC]
machineA> ssh -L 60000:localhost:60000 username@machineC

（Forwarding the 60000 port of machineA to the 60000 port of machineC）
Step2 [SSH port forwarding from machineC to machineB]

machineC> ssh -L 60000:localhost:60000 username@machineB
（Forwarding the 60000 port of machineC to the 60000 port of machineB）

Step3 [Launch PBVR Server]
machineB> mpiexec –n 5 pbvr_server

Step4 [Launch PBVR Client]
machineA> pbvr_client –vin filename

4.2.4.4 Testing SSH Port Forwarding Connection
To check if SSH port forwarding is available, use the following test program, which simply
transfers characters input from PBVR Server to PBVR Client. This program is available from
the link below.

“C for Linux 2” Mitsuyuki Komata, SYUWA System, Inc., September 2005 (Japanese).
http://www.ncad.co.jp/~komata/c4linux2/

Launch PBVR Server
server port_number

Launch PBVR Client
client server_hostname port_number

4.2.4.5 Connecting to Pre-post Server of K computer
This section shows an example of connecting a PC (‘machineA’) in s laboratory to the data
processing server of the K computer (Pre-post server pps3) via the login node of the K
computer (klogin).

Step1 [SSH port forward from machine to klogin]

machineA> ssh -L 60000:localhost:60000 username@k.aics.riken.jp
（Forwarding the 60000 port of machineA to the 60000 port of klogin）

Step2 [SSH port forward from K login node to pre-post server]
klogin> ssh -L 60000:localhost:60000 username@pps3

（Forwarding the 60000 port of klogin to the 60000 port of pps3）
Step3 [Launch PBVR Server]

pps3> mpiexec –n 5 pbvr_server
Step4 [Launch PBVR Client]

machineA> pbvr_client –vin filename
（Forwarding the 60000 port of klogin to the 60000 port of pps3）

 46

4.2.4.6 Local Connection in Windows
This section shows how to launch both PBVR Sever and PBVR Client on a single Windows
machine. The Visual Studio 2013 x64 Cross Tools command prompt in Visual Studio 2013 is
used as the terminal for launching the programs.

Step1 [Launch PBVR Server]
Windows> pbvr_server.exe

Step2 [Set the client parameter for Windows]
Windows> set TIMER_EVENT_INTERVAL=1000

Step3 [Launch PBVR Client]
Windows> pbvr_client.exe –vin filename

Another way of launching PBVR Server and Client is to execute a batch file with the

following lines.

set TIMER_EVENT_INTERVAL=1000
start PBVR_Server_win.exe
pbvr_client.exe –vin filename

4.2.4.7 Remote Connection from Windows Client
To connect PBVR Client in a Windows machine to PBVR Server in a remote machine, setup
port forwarding with the help of an SSH client software such as TeraTerm or Putty. The
following shows an example for TeraTerm.

1) Launch TeraTerm and hit cancel in the “New connection” dialog.

Figure 6 Tera Term dialog 1)

 47

2) Select Setup > SSH Transfer from the menu bar. Click Add… in the Forwarding
Setup dialog.

Figure 7 Tera Term dialog 2)

3) In the Select Direction for Forwarded Port dialog, select Forward Local Port and

enter the port number to be used for PBVR Client. In the to remote machine text field,
enter the domain name or the IP address of the server. In the port field, enter the port
number to be used on PBVR Server. Click on OK to complete the setup of port
forwarding.

Figure 8 Tera Term dialog 3)

4) Connect to the server. Select File > New Connection from the menu bar. In the New

Connection panel, enter the host name of the serve and click on OK. In the SSH
Authentication panel, enter the user name and passphrase, or specify the location of
the private key file, and click on OK.

 48

Figure 9 Tera Term dialog 4)

The following procedures show how to launch PBVR Server and Client after establishing
port forwarding. This example uses the Visual Studio 2013 x64 Cross Tools command prompt
in Visual Studio 2013 as the terminal for launching PBVR Client.

Step1 [Launch PBVR Server]

Server> mpiexec –n 4 pbvr_server –p port_number
Step2 [Set a client parameter for Windows]

Windows> set TIMER_EVENT_INTERVAL=1000
Step3 [Launch PBVR Client]

Windows> pbvr_client.exe –vin filename –p port_number

Note that PBVR Client on a Windows machine can be launched also by executing a batch

file with the following lines.

set TIMER_EVENT_INTERVAL=1000
pbvr_client.exe –vin filename –p port_number

 49

5 PBVR Client

5.1 Overview
PBVR Client can operate either in client-server mode or in stand-alone mode.

In client-server mode, PBVR Client receives particle data that is rendering primitives
generated in PBVR Server. Further, PBVR Client renders the data using OpenGL. PBVR
Client also gets visualization parameters (a transfer function etc.) via user interaction and
sends the parameters to PBVR Server. In this way, PBVR Client controls the volume
rendering process in PBVR Server. Data transfer between PBVR Client and PBVR Server
uses a socket communication with a user-specified port number.

In contrast, when PBVR is in stand-alone mode, it reads and displays particle data
generated by PBVR Server operating in batch mode.

5.2 Launching PBVR Client
The following examples show how to launch the client program in client-server mode and to
do so in stand-alone mode. When PBVR Client starts, it opens three panels: Viewer, Main
panel, and Time Panel.

Launch PBVR Client in client-server mode *1
$ pbvr_client -vin [sub-volume file name *2] [command line options]

Launch PBVR Client in stand-alone mode
$ pbvr_client [particle data file name] [command line options]

*1. Client-server mode requires starting PBVR Server beforehand.
*2. The file name for sub-volume can be specified with the absolute or the relative path to

the .pfi file.
To specify two or more pfi files for an input volume data file, make the pfl file that lists
the pfi files, and specify the pfl file with the command line option '-vin'.
It is necessary to write "#PBVR PFI FILES" to the head of the pfl file. The pfi file names
are written from the second line of the pfl file, by absolute path or relative path of the pfl
file. The following example shows content of pfl file.

#PBVR PFI FILES
hex_filter_out/hex.pfi
hex2_filter_out/hex2.pfi

 50

Table 12 List of command line option for client
Option Launch mode *1 Parameter

value
Default
parameters

Function

-h CS,SA - - Display the list of
options and parameters

-pd CS Real
number

1.0 Particle density

-S CS u, m u Particle sampling
method

u: uniform sampling
m:metropolis

sampling
-plimit CS 1~99999999 1000000 Particle limit *2
-tdata CS all, div all Particle data transfer

method
all: step batch

transmission,
div: sub-volume

divide forwarding）
-pa CS,SA File name - Visualization parameter

file
-vin CS File name - Name of the pfi or pfl

file of input volume data
*2

-tf CS File name - Name of the transfer
function file *3

-p CS Port number 60000 Port number of socket
communication

-viewer CS,SA 100-9999
×100-9999

620×620 Viewer resolution

-shading CS,SA {L/P/B}, ka, kd,
ks, n

- Shading method *4

-pout CS,SA File name - Output file name for
particle data *5

-pin1 SA File name - Input file name for
particle data

-iout CS,SA Directory name ./ Output directory name
for image files

*1. CS and SA denote client-server mode and stand-alone mode, respectively.

 51

*2. If this option conflicts with the option in the parameter file specified with ‘-pa’, the latter
is ignored.

*3. Transfer function files are generated by hitting the Export File button in the Transfer
Function Editor. In order to apply the transfer function specified in this option, hit the
Apply button in Transfer Function Editor. Alternatively, the transfer function file can
be loaded also with the Import File button.

*4. This argument specifies the shading parameters.

L: Lambert Shading
This method ignores specular reflection in the shading process.
Parameters ‘ka’ and ‘kd’ are the coefficient for ambient and diffusion, respectively.
They can have a value between 0-1.

P：Phong Shading
This method adds the specular reflection to Lambert shading. Phong shading imitates
smooth metal and mirrors. (This is sometimes called highlight).
Parameter ‘ka’, ’kd’,’ks’ (coefficients for specular reflection lying between 0-1) and ’n’
(strength of highlight lying between 0-100) are used.

B：Blinn-Phong Shading
This is a shading model that simplifies Phong shading. Parameters ‘ka’, ‘kd’, ‘ks’, and
‘n’ exist.

*5. This generates a series of particle data files that are named
“[file name]_[time index]_[number of sub-volumes]_[sub-volume index].kvsml”,
where the [file name] is the prefix specified this option.

 52

5.3 Terminating PBVR

5.3.1 Standard Termination
PBVR Client’s rendering process for the time-series data starts from the initial time step, and
continues to the final time step. When the final time step is rendered, PBVR Client returns to
the initial time step to loop over the steps. To terminate PBVR Client, press Ctrl+C in the
console running PBVR.

In client-server mode, pressing Ctrl+C in the client console terminates both PBVR Client
and PBVR Server. Just before the termination, PBVR Client and Server will synchronize their
time step. However, PBVR Client ignores pressing Ctrl+C whenever the client-server
communications are interrupted with the Stop button in Time Panel.

5.3.2 Forced Termination
When PBVR Server is terminated not by pressing Ctrl+C in PBVR Client’s console, PBVR
Client becomes stuck and cannot be terminated with Ctrl+C. Furthermore, even if Ctrl+C is
pressed to terminate PBVR Client, both PBVR Client and Server might become stuck. This
can happen if the time step is not updated due to heavy particle generation processes or
some other reason. In such a case, obtain the process IDs of PBVR Client and PBVR Server
using the ps command in the console, and then force them to quit with the kill command as
follows.

[Force the termination of a PBVR Client process]
$ ps -C pbvr_client
 PID TTY TIME CMD
19582 pts/6 00:00:00 pbvr_client
$ kill -9 19582

[Force the termination of a PBVR Server process】
$ ps -C pbvr_server
 PID TTY TIME CMD
19539 pts/5 00:00:00 pbvr_server
$ kill -9 19539

 53

5.4 Using PBVR Client GUI

5.4.1 Viewer
As shown in Figure 10, Viewer displays the rendering result of particle data.

Figure 10 Viewer

[Operations]
Rotation: move the mouse while pressing the left-button
Translation: move the mouse while pressing the right-button
Zoom: scroll up/down the mouse wheel, or move the mouse up/down while pressing the

Ctrl key
Reset: home button (fn + left arrow on Mac)

[Display]
time step: the time step of the displayed data
fps: the frame rate [frame/sec]

 54

5.4.2 Main Panel
Figure 11 shows Main panel of PBVR Client. The items of the panel are described below.

Figure 11 Main panel

 ・PARTICLE DENSITY
 Specifies the particle density related to the depth of the image.
 ・PARTICLE LIMIT

Specifies the maximum number of particles that are generated in PBVR Server.
Use this to avoid the explosive increase of the number of particles (e.g. due to the
false settings of a transfer function). The number is multiplied by 106.

 ・EYE POINT
 Specifies the viewpoint.
 ・CENTER POINT
 Specifies the location where the camera looks at.
 ・UP VECTOR
 Specifies the up vector of the camera.
 ・RESOLUTION

 55

 Specifies the Viewer’s resolution.
 ・Transfer Function Editor
 Displays Transfer Function Editor, which is described in the next section.
 ・Particle Panel
 Displays Particle Panel, which is described in the next section.
 ・Legend Panel
 Displays Legend Panel, which is described in the next section.
 ・Coordinate Panel
 Displays Coordinate Panel, which is described in the next section.
 ・Viewer Control Panel
 Displays Viewer Control Panel, which is described in the next section.
 ・Animation Control Panel
 Displays Animation Control Panel, which is described in the next section.
 ・SENDING
 Shows the progress of data transfer to the server program.
 ・RECEIVING
 Shows the progress of data transfer from the server program.
 ・CPU MEMORY
 Displays the system memory usage in megabytes.
 ・GPU MEMORY

Displays the GPU memory usage in megabytes.
 ・Display Particle Number

Display the number of the particle shown to a viewer is indicated.
 ・PFI file path (SERVER)

Specifies .pfi or pfl file name of imput volume data in PBVR Server.
 ・no-repeat sampling until Transfer Functions be edited

When the transfer function has not been changed in the client server mode, do
repetition drawing of time series data by using particle data in client memory.

 ・PBVR Filter information
 Displays information about the volume data in PBVR Server, which is the contents

of the .pfi file.
 ・FILE
 This button shows the FILE Panel, whose detail is described later.
 ・CROP

Displays CROP Panel, which is described in the next section.
 ・Set parameter
 Sends parameters specified in “Main panel” to the server program.

 56

5.4.2.1 FILE Panel
FILE Panel is a panel for reading and writing visualization parameter files. This panel is
shown when the FILE button is hit.

Figure 12 FILE Panel

・VIZ PARAMETER FILE
 specifies the path to a visualization parameter file.
・Browse …
 Opens a file dialog for specifying the path to a visualization parameter file.
・Export FILE
 Saves the current parameter settings to a visualization parameter file.
・Import FILE
 Imports a visualization parameter file.
・Close
 Closes FILE Panel.

 57

5.4.2.2 CROP Panel
CROP Panel is activated by hitting the CROP button in Main panel. Use CROP panel for
operations related to extracting and rendering elements involved within the Region Of Interest
(ROI). ROI can be specified with a cuboid, a sphere, or a cylinder.

Figure 13 CROP panel

[Operations]
Move region: move the mouse on trihedral panel
Zoom region: move the mouse on trihedral panel while pressing Ctrl

Select Object: Specifies the shape of the ROI

CROP: A cuboid
SPHERE: A sphere
PILLAR-XY base: A cylinder with a X-Y base
PILLAR-YZ base: A cylinder with a Y-Z base

 58

PILLAR-XZ base: A cylinder with a X-Z base
CROP: Specifies the range of the cuboid
SPHERE: Specifies the center and radius of the sphere
PILLER: Specifies the radius, the height, and the center coordinate values of the cylinder
RESET: Resets the CROP panel
APPLY: Extracts the ROI
CLOSE: Closes the panel

Displaying CROP panel overdraws the shape of the ROI in Viewer as in Figure 14.

Figure 14 Viewer panel interacting with CROP

 59

5.4.3 Transfer Function Editor
Transfer Function Editor edits the transfer functions, which assigns a color/opacity to each
scalar value for volume rendering. Transfer Function Editor is activated by hitting the
Transfer Function Editor button in Main panel. In a standard volume rendering, a transfer
function is defined by only one physical quantity. In contrast, PBVR provides a new
multi-dimensional transfer function design, which has the following three features:

1) Assign two independent variable quantities to color and opacity.
2) Define each variable quantity with an arbitrary function of the X-Y-Z coordinates and

variables q1, q2, q3…
3) Synthesize a multidimensional transfer function from one-dimensional transfer functions

t1-t5 using equations.

This new transfer function design adds significant flexibility to visualization. Transfer
Function Editor is shown in Figure 15. Each item in the panel is explained below.

Figure 15 Transfer Function Editor

[Operations]

 60

Scale change in histogram: Drag the mouse up/down on Histogram

 ・Transfer Function RESOLUTION
 Species the resolution of the transfer function
 ・Transfer Function SYNTHESIZER

Specifies a function to synthesize one dimensional transfer functions t1-t5 *1
 ・Transfer Function Name

Selects a transfer function (t1-t5) to edit with a pull-down menu.
 ・Reset

Resets the panel.
 ・Apply

Sends a transfer function defined with this panel to the server.
 ・File Path
 Specifies a file path for saving and loading a transfer function file.
 ・Export File

Saves a transfer function defined with this panel to a file in the same format as the
parameter file specified with the command line option ‘-pa’.

 ・Import File
Loads a transfer function stored in a file to this panel

 ・Close
Close Transfer Function Editor.

5.4.3.1 Color Map Editor Panel
[Transfer Function Color Map category]
The GUI components in this category set a variable quantity and color for the transfer
function specified with the Transfer Function Name field.
・Color

Displays the colors that were assigned to the values of variable quantity by the
transfer function.

・Variable
Defines the (synthesized) variable quantity used for color of the selected transfer
function. An equation can be entered, while the following variables are available.
 Physical quantities：q1, q2, q3, .., qn.
 Coordinate values：X, Y, Z.

・Range Min
Specifies the minimum value of the specified variable quantity.

・Range Max
Specifies the maximum value of the specified variable quantity.

・Server side range min

 61

Displays the minimum value of the (synthesized) variable quantity obtained in the
server program.

・Server side range max
Display the maximum value of the (synthesized) variable quantity obtained in the
server program.

・Color Map Editor (freeform curve)
Displays a sub-panel, which specifies a transfer function with a freeform curve. Use
the mouse to edit the freeform curve.

Figure 16 Color Map Editor (freeform curve) panel

・Color palette
Specifies the saturation, the brightness, and the hue of a color with mouse cursor.
On the left, the horizontal and vertical axes correspond to the saturation and
brightness, respectively. The neighboring bar shows the hue.

・RGB
Specifies the hue of the color by placing a mouse cursor. The upper-right box
displays the color created by Color palette and RGB bar.

・Color
Blends the colors in Color area with a color specified with Color palette and RGB
bar. To specify the locations in Color area, trace the locations by dragging the
mouse cursor while pressing the left mouse button. The blending ratio of the original
color and the overpainting color is determined by the mouse cursor’s vertical
position. For example, when the upper edge of the color bar is traced from left to

 62

right, the Color bar is painted completely by the specified color rather than by
blended colors; when the vertical center line of Color bar is traced, the colors are
replaced with blended colors with 50% of the original color and 50% of the specified
color.

・Reset
Resets the panel.

・Undo
Undoes the last mouse action.

・Redo
Redoes the last mouse action undone.

・Save
Saves the transfer function.

・Cancel
Closes the panel.

・Color Map Editor (expression)
Displays a panel to create a transfer function by taking equations as input.

Figure 17 Color Map Editor (expression) panel

・Color
Displays a color bar of a transfer function created in this panel.

・R
Describes a transfer function of the R component of the color.

・G
Describes a transfer function of the G component of the color.

・B
Describes a transfer function of the B component of the color.

・Save button
Saves a transfer function created in this panel.

・Cancel

 63

Closes the panel.

・Color Map Editor (control points)
Displays a panel for creating a transfer function. This editor takes control points as
input.

Figure 18 Color Map Editor (control points) panel

・Color
Displays a color bar for the transfer function that is being defined with this panel.

・Control Point
Specifies the values of (up to 10) control points with the fields CP1)-10) .

・Red
Specifies the R component of the color at the control points.

・Green
Specifies the G component of the color at the control points.

・Blue
Specifies the B component of the color at the control points.

・Save
Saves the transfer function.

・Cancel
Closes the panel.

・Color Map Editor (select colormap)
Displays a panel to create a transfer function from preset color bar templates.

 64

Figure 19 Color Map Editor (select colormap) panel

・Color
Displays the color bar of the transfer function that is being created with this panel.

・Default Color
Selects a color bar to be set as the transfer function. The following templates are
available.
Rainbow
Blue-white-red
Black-red-yellow-white
Black-blue-violet--yellow-white
Black-yellow-white
Blue-green-red
Green-red-violet
Green- blue--white
HSV model
Gray-scale
Black
White

・Save
Saves the transfer function created with this panel.

・Cancel
Closes the panel.

 65

5.4.3.2 Opacity Editor
[Transfer Function Opacity Map Category】
The GUI components in this category set a variable quantity and color for the transfer
function specified with the Transfer Function Name field.
・Opacity

Displays the transfer function curve under edit.
・Variable

Defines the (synthesized) variable quantity used for the opacity of the selected
transfer function. An equation can be entered, while the following variables are
available.
 Physical quantities: q1, q2, q3, .., qn.
 Coordinate values: X, Y, Z.

・Range Min
Specifies the minimum value of the variable quantity.

・Range Max
Specifies the maximum value of the variable quantity.

・Server side range min
Displays the minimum value of the (synthesized) variable quantity obtained in the
server program.

・Server side range max
Display the maximum value of the (synthesized) variable quantity obtained in the
server program.

・Color Map Editor (freeform curve)
Displays a panel for creating a transfer function with a freeform curve. Use the
mouse to edit the freeform curve.

Figure 20 Opacity Map Editor (freeform curve) panel

 66

・Opacity
Specifies a transfer function for the opacity. A freeform curve is drawn by dragging
the mouse while holding the left mouse button. A piecewise linear curve is drawn by
specifying control points with right clicks.

・Reset
Resets the panel.

・Undo
Undoes the last mouse action.

・Redo
Redoes the last mouse action undone.

・Save
Saves the transfer function created with this panel.

・Cancel
Closes the panel.

・Color Map Editor (expression)
Display a panel to create a transfer function using equations.

Figure 21 Opacity Map Editor (expression) panel

・Opacity
Displays the transfer function for opacity specified by the equation in the field O.

・O
Specifies the equation for the curve that specifies the transfer function of opacity.

・Save
Saves the transfer function created with this panel.

・Cancel
Closes the panel.

 67

・Color Map Editor (control point)
Displays a panel to create a transfer function by taking equations as input.

Figure 22 Opacity Map Editor (control points) panel

・Opacity（on the top）
Displays the transfer function for the opacities specified in this panel.

・Control Point
Specifies the values of (up to 10) control points in the fields CP1)-10) .

・Opacity（on the bottom right）
Specifies the opacities at the control points.

・Save
Saves the transfer function created with this panel.

・Cancel
Closes the panel.

 68

5.4.3.3 Function Editor
Table 12 lists the built-in math operations available in the function editor. They can be used to
synthesize transfer functions and variable quantities, and to define colormap/opacity curves.

Table 13 Math operations in function editors

Math operation In function editors
+ +
- -
× *

/ /
sin sin(x)
cos cos(x)
tan tan(x)
log log(x)
exp exp(x)
square root sqrt(x)

power x^y

 When NaN appears by the arithmetic processing of the function editor, PBVR outputs the
error message and stops the drawing process.

 69

5.4.4 Time panel
Figure 23 shows Time panel, which specifies the time steps for visualization. Each widget
works as described in the followings.

Figure 23 Time panel

 ・Progress
 Expresses the current time step as percentage.
 ・Time step
 Specifies the time step of the data to be rendered.
 ・Min Time
 Specifies the minimum time step for ROI.
 ・Max Time
 Specifies the maximum time step for ROI.
 ・Start/Stop
 Starts/stops the communication between PBVR Client and PBVR Server.

 70

5.4.5 Particle panel
Figure 24 shows Particle panel, which integrates multiple particle datasets. Particle panel is
activated by hitting the Particle panel button in Main panel. Each widget works as described in
the followings.

Figure 24 Particle panel

・Display Particle
 Shows a list of particle datasets, which are sent from PBVR Server, or are loaded
from local files (maximum 10 files).

1)Server check box
Activated when a particle dataset from PBVR Server is integrated with local particle
data sets. This checkbox is not available in stand-alone mode.

2)(Particle1)-(Particle10) check box
Activated when particle datasets loaded from local files are integrated. The checkbox
is not available before particle datasets are loaded via Particle file panel or command
line options –pin1, -pin2, …, -pin10.

・Keep Initial Step
Specifies particle datasets, in which the initial step data is displayed before the time
series starts, when integrated particle datasets start from different time steps.

・Keep Final Step

 71

・Keep Final Step

Specifies particle datasets, in which the final step data is displayed after the time
series ends, when integrated particle datasets end at different time steps.

・Particle File (Add/Export)
Opens Particle File sub-panel.

・Delete Particle
Specifies a particle dataset to be deleted from a list in Display Particle.

・Delete
Delete a particle dataset.

・Close
Close Particle panel .

5.4.5.1 Particle File sub-panel
Particle File panel is a panel for reading and writing particle data files. This panel is shown
when the Particle File button is hit.

Figure 25 Particle File panel

・Close
Close Particle File panel.

【Add Particle categoly】
・Add Item

Specifies a particle data slot, in which a new particle dataset is loaded. When a old
particle dataset exists for the particle data slot, the slot is overwritten by a new
particle dataset.

・File path

 72

Specify a particle data file.
・Browse

Opens a file dialog for specifying the path to a visualization parameter file.
・Particle name (Optional)

Specifies the name of a particle dataset shown in Particle panel.
・Add

Add a particle dataset to Particle panel.
【Export Particle Categoly】
・File path
 Specify a particle data file.
・Browse
 Opens a file dialog for specifying the path to a visualization parameter file.
・Export
 Output integrated particle data.

5.4.6 Image file production
PBVR Client saves image data on Viewer in the following two modes, and plays it as a

movie. Image file production is activated by hitting the Animation Control Panel button in
Main panel.

l Time series data mode
Saves images of time series data as a series of image data files with the BMP format.

The image data files are converted or compressed as a movie file via free softwares such
as ImageMagic and ffmpeg

l Key frame animation mode
Keeps geometry information of viewer at an arbitrary point as a key frame, and plays a

series of key frames as a key frame animation.

Figure 26 shows Animation Control Panel. Each widget works as described in the

followings.

 73

Figure 26 Animation Control Panel

 ・capture
Controls on/off of image production.

 ・image file
Specifies a prefix of image data files. The default name is PBVR_image.

 ・file
Specifies a key frame file, which contains a series of geometry data. The default
name is ./xform.dat.

 ・interpolation
Specifies the number of frames used for linear interpolation of geometry data
between two key frames in a key frame animation. The default value is 10.

 ・total key frames
Shows the number of key frames stored in the current key frame animation. The
value is initialized to 0, and incremented (or decremented) by pressing “x” (or “d”).
The value is initialized to 0 by pressing “D”.

 ・total animation frames
Shows the number of total frames stored in the current key frame animation, which is
calculated as

(total key frames – 1) x interpolation
 ・Close

Close Animation Control Panel .

 74

5.4.6.1 Image production
 Image files are produced as follows.

① Specify prefix of image files in image file.
② Select “on” in the capture drop down menu.
③ A series of image files are saved at each time step.

 ④ Image production is stopped by selecting “off” in the capture drop down menu.

 The image files are saved in the directory specified by the command line option ‘-iout’.
When ‘-iout’ option is not specified, they are saved in the current directory ‘./’. The following
shows an example of image data produced with the default prefix “PBVR_image”.

PBVR_image.00001.bmp
PBVR_image.00002.bmp
 :
 :

 When the image files are produced from a key frame animation, which is explained later,
the file names are modified by adding “_k” after the prefix.

PBVR_image_k.00001.bmp
PBVR_image_k.00002.bmp
 :
 :

5.4.6.2 Key frame animation of a still image
 A key frame animation of a still image, which is obtained by pressing Stop in Time Panel, is
produced as follows.

【Capture key frames and save them in a file】
①	 Specify a key frame file in file.
②	 Activate Viewer by clicking it.
③	 Adjust view and press ‘x’ to store the geometry information of view on a memory.
④	 Repeat ③.
⑤	 Press ‘M (Shift+m)’ to play the key frame animation.
⑥	 If the contents of the key frame animation is OK, press ‘S (Shift+s)’ to save a series of

geometry information in the key frame file.

【Play a key frame file】
①	 Specify a key frame file in file.

 75

②	 Activate Viewer by clicking it.
③	 Press ‘F (Shift+f)’ to play a key frame animation stored in the key frame file.
④	 Press ‘x’ to add new key frames to the current key frame animation.

Table 14 Keys used for controlling key frame animation

Key Function
x Add geometry information of the current Viewer to key frame

data on a memory
d Delete the last key frame
D Delete all key frames
M Play and pause key frame data on a memory
S Save key frame data on a memory to a key frame file
F Load a key frame file and play its key frame data

 76

5.4.6.3 Key frame animation of time series data
A key frame animation of time series data is produced as follows.

① By pressing ‘x’ while time series data is rendered, both geometry information and a

time step number are stored in a memory.
② Press ‘S’ to save a series of geometry information and time step numbers in the key

frame file.
③ Press ‘F’ to load a series of geometry information and time step numbers in the key

frame file and play a key frame animation. Here, If one sets key frames at unequal
intervals, interpolation frames, which are specified in interpolation, are assigned
non-uniform in time.

 Time series data

key frame information
No. time step number
0 00002
1 00004
2 00025
3 00035

Figure 27 Key frame animation for time series data

In an example in Figure 27, if one uses 10 interpolation frames between key frames, 5
interpolation frames are assigned to the time steps 00002 and 00003 in between key
frames No.0 and 1. On the other hand, in between No.1 and 2, 10 interpolation frames are
assigned to the time steps from 00004 to 00024. As a results, the time steps, 00004, 00006,
…00024 are shown in the key frame animation.

00002,00003

00025,00026,00027～

00035～00044

00004,00006,00008～

 77

5.4.6.4 Key frame file format
A key frame file contains binary data with the following format.

type
size

(byte)
data

int 4 time step number
float 4 rotation[0].x
float 4 rotation[0].y
float 4 rotation[0].z
float 4 rotation[1].x
float 4 rotation[1].y
float 4 rotation[1].z
float 4 rotation[2].x
float 4 rotation[2].y
float 4 rotation[2].z
float 4 translation.x
float 4 translation.y
float 4 translation.z
float 4 scaling.x
float 4 scaling.y
float 4 scaling.z

Figure 28 Key frame file format

File format
Key frame data 1
Key frame data 2

:

 78

5.4.7 Legend panel
 Figure 29 shows Legend panel, which displays a bar relation between physical quantity and
color is shown. Legend panel is activated by hitting the Legend Panel button in Main panel.
Each widget works as described in the followings.

Figure 29 Legend panel

 ・Display Legend
By turning on the Display Legend check box, the legend is shown.

 ・Transfer Function Name
Selects a transfer function (t1-t5) to specify color map and range of legend with a
pull-down menu.

 ・vertical or horizontal
Specifies a direction of legend.

 ・Caption
Specifies a caption of legend.

 ・Division
Specifies a properties of tickmark in legend.
Intervals : Number of tickmarks.
Edit Color : Color of tickmark.
Thickness : Thickness of tickmark.

 79

 ・Frameline
Specifies a properties of frame border in legend .
Edit Color : Color of frame border.
Thickness : Thickness of frame border.

・Apply
 Setting is reflected .

 ・Close
Close Legend panel.

Figure 30 shows an example of legend.

Figure 30 Exanple of legend

 80

5.4.8 Coordinate panel
Figure 31 shows Coordinate panel, A coordinate change by designation of a numerical

formula is performed to each coodinate axis. For example you can change from Cartesian
coordinates system to cylindrical coordinates system.

Figure 31 Coordinate panel

・Coordinate 1

Specifies the numerical formula to calculate the new X coordinate.
Empty or blank means just "X".

・Coordinate 2
Specifies the numerical formula to calculate the new Y coordinate.
Empty or blank means just "Y".

・Coordinate 3
Specifies the numerical formula to calculate the new Z coordinate.
Empty or blank means just "Z".

・ReScale
Changing the scale of the view with the new coordinates.

・Apply
Sends a formula defined with this panel to the server.

・Close
Close Coordinate panel.

The text box Coordinate 1 - 3, it can be set coordinate transformation formula. Variables

that can be described in the formula, is the original coordinates (X, Y, Z), physical data (q1,
q2, ... , q9) and time (T). X, Y, Z, and T does not distinguish between the upper / lower case.
In addition, operations that can be described in the formula is the same as the transfer
function editor (see 5.4.3.3). If specified physical data is not existed in the data, will be
evaluated as 0.

 81

After push apply button, a formula is reflected .
5.4.9 Viewer control panel
 Figure 32 shows Viewer control panel, which specifies a properties of viewer. Viewer
control panel is activated by hitting the Viewer Control Panel button in Main panel. Each
widget works as described in the followings.

Figure 32 Viewer control panel

 ・Background color
Specifies a background color of viewer.

 ・Font Size
A font type of the character shown to a viewer is chosen. The available fonts are:
8x13 A fixed width font with every character fitting in an 8 by 13 pixel rectangle.
9x15 A fixed width font with every character fitting in an 9 by 15 pixel rectangle.
TIMES_ROMAN_10 A 10-point proportional spaced Times Roman font.
TIMES_ROMAN_24 A 24-point proportional spaced Times Roman font.
HELVETICA_10 A 10-point proportional spaced Helvetica font.
HELVETICA_12 A 12-point proportional spaced Helvetica font.
HELVETICA_18 A 18-point proportional spaced Helvetica font.

 ・Close
Close Viewer control panel.

 82

6 An Example with the Sample Dataset

The following sections demonstrate the usage of PBVR for a sample dataset gt5d.tgz.

6.1 Filtering Process
Uncompress gt5d.tgz to extract the following files under the directory ./gt5d.

gt5d.fld: An AVS field file
co3d.dat: A coordinate data file
pd3d.dat: The variable 1
psid.dat: The variable 2
param.txt: Input parameters for PBVR Filter
demo.tf: A transfer function file for demonstration

Execute PBVR Filter with the following command (which invokes the OpenMP version).

$ filter ./ param.txt

The contents of param.txt are the followings.

in_dir=./gt5d
field_file=gt5d.fld
out_dir=./gt5d
out_prefix=case
start_step=0
end_step=4

The above example specifies the SPLIT file format (which is the default format), a single

sub-volume (without sub-volume decomposition), and the same directory both for input and
output. This filtering process generates the following files in the specified output directory.

case.pfi : a .pfi file
case_YYYYYYY_ZZZZZZZ_connect.dat : an element configuration file
case_YYYYYYY_ZZZZZZZ_coord.dat : a node coordinate file
case_XXXXX_YYYYYYY_ZZZZZZZ.kvsml : a kvsml file
case_XXXXX_YYYYYYY_ZZZZZZZ_value.dat : a variable file

 83

6.2 Starting PBVR
[step 1] Launch PBVR Server (which is the OpenMP version)

$ pbvr_server
first reading time[ms]:0
Server initialize done
Server bind done
Server listen done
Waiting for connection ...

[step 2] Launch PBVR Client. This example uses the metropolis sampling and Phong
Shading.

$ pbvr_client -S m -vin ./gt5d/case.pfi -shading P,0.6,0.6,0.6,30

 84

Figure 33 The GUIs of PBVR

 85

6.3 Designing Transfer Functions
This section shows examples of visualizing gt5d.fld, using the multi-dimensional transfer
function that is produced with the advanced transfer function design capability of PBVR.
gt5d.fld contains structured grid volume data that consists of two variables.

6.3.1 Volume Rendering for a Single Variable
First of all, understand the variable q1 by setting the transfer function t1 as shown in Figure
34. In this example, the transfer function is designed with Transfer Function Editor. Shown
in the left of Transfer Function Editor is the configuration of colors, while in the right is that of
the opacities. Notice that this configuration is the conventional volume rendering for a single
variable.

Figure 34 The volume rendering result for the variable q1.

 86

6.3.2 Multivariate Volume Rendering
The next example shows the result of multivariate volume rendering, in which the variables q1
and q2 are synthesized as shown in Figure 35. In this example, the colors are assigned to the
variable q1, while the opacities are assigned to the variable q2. The opacity map extracts two
torus surfaces, which are given by the iso-surfaces of the variable q2. The colors encode the
distribution of the q1 values in these iso-surfaces.

Figure 35 Rendering a multivariate volume. The q1 values are color-mapped onto the
iso-surfaces of q2.

 87

6.3.3 Slicing Volumes
Figure 36 shows an application of PBVR’s multivariate volume rendering for extracting a slice.
With PBVR, an arbitrary function can be used to design a transfer function. In this example,
the cylindrical surface (X^2+Z^2=const.) is extracted and the color of the variable q1 is
mapped onto it.

Figure 36 A rendering result for Slicing the volume with PBVR’s multivariate volume
rendering capability.

 88

6.3.4 Synthesis of Transfer Functions
This section explains how to synthesize transfer functions in PBVR. Figure 37 shows a
transfer function t4, whose opacity function makes the region Y > 0 transparent. By
synthesizing the previously described transfer functions t1, t2, and t3 together with a new
transfer function t4 as (t1 + t2) * t4 + t3, the individually extracted sub-regions can undergo
flexible composition through arithmetic operations. In this example, the colors of t2 and t3 are
set to (R, G, B) = (0, 0, 0), while the color of t4 is set to (R, G, B) = (1, 1, 1). In the above
synthesis equation, the final colors obey the rainbow colormap defined for t1. On the other
hand, the opacity of t4 is multiplied to the sum of t1 and t2 in order to extract the lower half
region (Y < 0) of t1 and t2. Then, the resulting region is synthesized with the cylindrical
surface given by t3. As revealed in these examples, PBVR’s ability to synthesize transfer
functions is powerful considering the capability to extract arbitrary region for each variable and
to carry out a preferred series of operations.

Figure 37 Synthesizing transfer functions

 89

6.4 Integration of particle datasets
While the previous section shows a composition of volume rendering, iso-surfaces, and
surface rendering via multi-dimensional transfer functions, the similar image composition is
possible also by integrating multiple particle datasets. This section explains an example of
particle integration.

6.4.1 Save particle datasets
Particle datasets are stored via Particle File sub-panel in Particle panel. Figure 38 shows
an example of “Export Particle”. In this case, the following files are generated with the prefix
“p1”.

./particle/p1_XXXXX_YYYYYYY_ZZZZZZZ.kvsml
./particle/p1_XXXXX_YYYYYYY_ZZZZZZZ_colors.dat
./particle/p1_XXXXX_YYYYYYY_ZZZZZZZ_coords.dat
./particle/p1_XXXXX_YYYYYYY_ZZZZZZZ_normals.dat

Here, XXXXX is the time step, YYYYYYY is the sub-volume number, and ZZZZZZZ is the
total sub-volume number. “colors”, “coords”, and “normal” contain color, coordinates, and
normal vector of each particle, respectively. By hitting the Export button, integrated particle
data is stored in the above files, and during the saving process, the Export button is
de-activated, and after whole time series data is stored, the Export button becomes active
again.

Figure 38 Particle File panel (Export is active)

 90

Figure 39 Particle File panel (Export is non-active)

6.4.2 Load particle datasets
In the following example, three particle datasets p1, p2, and p3, which corresponds to the
images in Figures 30~32, are loaded and integrated. Here, PBVR Client in stand-alone mode
is launched with the following command, and the particle datasets are specified in the
command line options. (In client-server mode, particle datasets are specified in Particle
panel.)

$ pbvr_client -shading P,0.6,0.6,0.6,30 –pin1 ./particle/p1 –pin2 ./particle/p2 –
pin3 ./particle/p3

After launching, p1~p3 are loaded in Particle panel. By turning on the Display particle check
box for p1, the volume rendering is shown as in Figure 40. In addition, by turning on the
Display particle check boxes for p2 and p3, all three particle datasets are integrated as in
Figure 41. The integrated particle data can be stored as a single particle dataset via Particle
File panel. It is noted that in order to obtain correct integrated images, all particle datasets
have to be generated by using the same “particle density” and “particle limit” parameters,
which are specified by the command line options, “-pd” and “-plimit”, or by the Main panel.

 91

Figure 40 Particle dataset p1

Figure 41 Integration of p1, p2, and p3

 92

6.5 Saving Results
After designing the transfer function, PBVR can save the resulting image and parameters in
following three ways.

1) Image output (5.4.5)
In order to save the results as images, select on from the capture drop down menu in
Animation panel. The bitmap image files (PBVR_image.xxxxx.bmp) are generated.

2) Transfer function file (5.4.3)
In order to generate the transfer function file, write file name of the transfer function in
File Path field of Transfer Function Editor and press Export File. Later, this file can
be loaded by hitting Import File.

3) Visualization parameter file (5.4.2)
In order to run PBVR Server in batch mode, all the visualization parameters including
the transfer function can be exported. Open File panel from Main panel, specify the
parameter filename, and press Export File.

6.6 Example of Batch Mode
This section explains how to run PBVR Server in batch mode using the visualization
parameter file exported in the previous section. This mode is developed for carrying out
massively parallel processing with supercomputers. In addition, this mode is useful also for
high speed rendering of time series data with PBVR Client in stand-alone mode, since the
latency due to particle generation and particle data transfer can be eliminated.

[Step 1] Launch PBVR Server (of OpenMP version) in batch mode

$ pbvr_server –B –vin ./gt5d/case.pfi –pout ./output/case -S m -pa ./param.in

[Step 2] Launch PBVR in stand-alone mode

$ pbvr_client –pin1 ./output/case -shading P,0.6,0.6,0.6,30

