

In-situ PBVR (v1.00) User Guide

March 2019

Japan Atomic Energy Agency

Center for Computational Science & e-Systems

 i

Revision Record
Version
number

Date revised Revised
chapter

Revised content

1.00 2019.03.28 - Release

 ii

目次

１ Introduction ... 4

１.１. Overview of Particle Sampler ... 6
１.２. Overview of Daemon ... 6
１.３. Overview of PBVR Client ... 6

２ Package Configuration .. 8

２.１. Load Module Package ... 8
２.２. Source Code Package ... 10

３ Build ... 11

３.１. Daemon and Particle Sampler ... 11
３.２. PBVR Client .. 13

３.２.１. Linux・Mac ... 13
３.２.２. Windows.. 14

４ Setup of In−situ Visualization .. 16

４.１. Setting of Environment Variables ... 16
４.２. Setting of Visualization Parameters ... 16
４.３. Port Forwarding Connection .. 16

４.３.１. Remote Connection between Tow Machines .. 17
４.３.２. Remote Connection with Several Machines ... 17

４.４. Launching Daemon and Port Forwarding ... 17

５ Particle Sampler .. 19

５.１. Particle Generation Function for Structured Grid .. 19
５.２. Particle Generation Function for Unstructured Grid .. 20
５.３. Particle Generation Function for AMR Grid .. 21
５.４. Connection into Simulation Code ... 22

５.４.１. Domain Information and Particle Generation Function .. 23

６ PBVR Client ... 24

６.１. Launching PBVR Client ... 24
６.２. Terminating PBVR Client ... 24

６.２.１. Forced Termination .. 25
６.３. Using PBVR Client GUI ... 26

６.３.１. Viewer ... 26
６.３.２. Main Panel .. 26
６.３.３. Transfer Function Editor... 29

 iii

６.３.４. Time Panel .. 44
６.３.５. Particle Panel ... 45
６.３.６. Image File Production .. 49

７ Samples ... 54

７.１. ICEX ... 54
７.２. JKNL ... 56
７.３. Windows ... 58

 4

１ Introduction

This document is a user guide for in-situ PBVR, a remote visualization system in a situation
developed at the Center for Computational Science & e-Systems in Japan Atomic Energy Agency.
In-situ visualization avoids large-scale data I/O and reliably visualizes a large-scale simulation by

simultaneously visualizing the calculation results with the simulation. In-situ PBVR compresses
large-scale data into visualization particle data and allows interactive viewpoint changes on a user PC.
This system has been developed using C++ and realizes in-situ visualization using the particle-based
volume rendering (PBVR) method and the visualization library KVS developed at Koyamada

Laboratory, Kyoto University. The system consists of the three following components:

（１） Particle sampler
The particle sampler denotes visualization libraries that are coupled to the simulation code. It then
converts the calculation results into visualization particles at each time step of the simulation. For
the visualization particles, one file is output on the storage for each computing node. The particle
sampler then generates visualization particles by referring to the visualization parameter file on the

storage.

（２） Daemon
The daemon is an in-situ PBVR file-based control program that runs in an interactive node. It
aggregates particle files on the storage and transfers them to the user PC via the network.

Moreover, it receives visualization parameters sent by the PBVR client and outputs them as a file.

（３） PBVR client
The PBVR client operates on the user PC, projects particle data on the screen, and displays a
visualized image on the viewer. The user can see the visualized image, adjust the visualization

parameters (e.g., color and opacity), and send it to the daemon.

In-situ PBVR has a multivariate visualization function that can be applied to various simulations in a

versatile manner. For conventional visualization, the spatial distribution of physical values is drawn by
mapping a color and an opacity function (transfer functions) to one physical value. In-situ PBVR
provides a transfer function synthesizer that enables designing multivariate transfer functions using

algebraic expressions.

 5

Figure １-1 Configuration of the In-situ PBVR framework

Supercomputer

Simulation

Storage

User
PC

Vis.
Param.

Vis.
Param.

Particle
data

Particle Sampler Daemon PBVR Client

Particle dataParticle data

Network

Aggregation
Visualization Param.

Viewer

Color

Opacity

User

 6

１.１. Overview of Particle Sampler
The particle sampler is parallelized by a hybrid of the MPI/OMP programming model, which further

accelerates the generation of particle data using the SIMD operation. The particle sampler is
MPI-parallelized without changing the domain decomposition of simulation and generates particles in
element parallel using OpenMP for each decomposed domain. The synthesis of physical values,

synthesis of transfer functions, and interpolation of physical values, which are required in multivariate
visualization, are vectorized using SIMD operations.

Three types of particle samplers are available according to the simulation grid types: one for
structured grids, one for unstructured grids, and one for hierarchical grids. The particle sampler

supports the simulation code written in C/C++ and FORTRAN. For in-situ visualization, the particle
sampler is inserted into the time step loop of the simulation. At this time, the multivariate data of
simulation results, lattice data, and global coordinates of the region are input as arguments of the
particle sampler. The memory layout of multivariate data also assumes an array-like structure.

１.２. Overview of Daemon
The daemon is executed in an interactive node or interactive job of the supercomputer, and is key to

realize interactive visualization during batch processing. The daemon constantly monitors files on
storage and collects particle files output using the particle sampler. This collection is asynchronous with

the particle sampler and the simulation; hence, it does not impede the simulation performance. The
particle file collection is parallelized using OpenMP, and the daemon aggregates the particle files into
single-particle data and sends it to the PBVR client. Moreover, the daemon receives the visualization
parameters sent from the PBVR client and updates the visualization parameter file on the storage used

by the particle sampler.
For in-situ PBVR, the interactive node and the user PC need to be connected by port forwarding

because the daemon and the PBVR client send and receive data by socket communication via the
internet. Therefore, the daemon does not work and interactive visualization cannot be used if the port

forwarding is not permitted on a supercomputer. Moreover, interactive visualization cannot be used
even on a supercomputer that employs staging I/O, in which file output does not occur until the end of
batch processing.

１.３. Overview of PBVR Client
The PBVR client is launched on the user PC and comprises a screen for displaying the visualization

result and a “transfer function synthesizer” (TFS), which is a function for realizing multivariate
visualization. TFS has a volume data synthesis function that combines variables included in the result
data to generate new volume data as well as a transfer function synthesis function that combines

multiple transfer functions. The user specifies the synthesis function using an algebraic expression on
the TFS. The algebraic expression is transferred to the PBVR sampler as a visualization parameter,
and the volume data and transfer function syntheses are performed in real-time using a computer
algebra system. Users can utilize the initial mathematical functions and spatial derivatives of physical

 7

variables as algebraic expressions on the TFS and flexibly design the transfer function for the

multivariate data using mathematical expressions.

 8

２ Package Configuration

In-situ PBVR is provided as a source code package and a load module package. The daemon and
the PBVR client are programs that work by themselves. The particle sampler is provided as a library to
be coupled to the simulation code and is composed of the following:

（１） Particle generation library, providing the particle generation function
（２） KVS library, providing the visualization function
（３） Computer algebra library, providing the mathematical algebraic calculation function

２.１. Load Module Package
The load modules of the particle samplers and the daemons are generated using JAEA’s

supercomputer ICEX and KNL cluster (JKNL). The PBVR clients are provided for Mac, Windows, and
Linux. The users need to build from the source code for use in other environments. Table ２-1 to Table
２-7 show lists of the load modules.

Table ２-1 Particle generation libraries for the structured grid (a part of the particle sampler)

Platform Parallelization Load module
ICEX MPI+OpenMP InSituLib_struct/libInSituPBVR_icex.a

JKNL MPI+OpenMP InSituLib_struct/libInSituPBVR_jknl.a

Table ２-2 Particle generation libraries for the unstructured grid (a part of the particle sampler)

Platform Parallelization Load module
ICEX MPI+OpenMP InSituLib_unstruct/libInSituPBVR_icex.a

JKNL MPI+OpenMP InSituLib_unstruct/libInSituPBVR_jknl.a

Table ２-3 Particle generation libraries for the AMR grid (a part of the particle sampler)

Platform Parallelization Load module
ICEX MPI+OpenMP InSituLib_AMR/libInSituPBVR_icex_a

JKNL MPI+OpenMP InSituLib_AMR/libInSituPBVR_jknl.a

Table ２-4 KVS library (a part of the particle sampler)

Platform Parallelization Load module
ICEX libkvsCore_icex.a

JKNL libkvsCore_jknl.a

 9

Table ２-5 Computer algebra library (a part of the particle sampler)

Platform Parallelization Load module
ICEX libpbvrFunc_icexa

JKNL libpbvrFunc_jknla

Table ２-6 Daemon

Platform Parallelization Load module
ICEX OpenMP pbvr_daemon_icex

JKNL OpenMP pbvr_daemon_jknl

Table ２-7 PBVR client

Platform Parallelization Load module
Linux OpenMP pbvr_client_linux

Mac OpenMP pbvr_client_mac

Windows ※1 OpenMP pbvr_client_win

※1. Copy glut32.dll in the same directory for Windows version.

 10

２.２. Source Code Package
The particle sampler, daemon, and PBVR client are generated by compiling the source code

package in the user’s environment. Table ２-8 shows a source tree of the in-situ PBVR package. The
source code package contains a particle sampler-coupled test simulation code.

Table ２-8 Source tree of the In-situ PBVR

Directory/file name Explanation
pbvr_inSitu_1.00/ 1.00 is version number

|-pbvr.conf Configuration file for the Makefile

|-Makefile Makefile for particle sampler, daemon, and PBVR client

|-arch/ Setting files for various environments

|-Client/ PBVR client program

|-Common/ Protocol, communication, and common library

|-Daemon/ Daemon program

|-Example/ Samples of test simulation code

 |C/ C version

 |-Hydrogen_struct/ For the structured grid

 |-Hydrogen_AMR/ For the AMR grid

 |-Hydrogen_unstruct/ For the unstructured grid

 |-Fortran/ Fortran version

 |-Hydrogen_struct/ For the structured grid

 |-Hydrogen_AMR/ For the AMR grid

 |-Hydrogen_unstruct For the unstructured grid

|-FunctionParser/ Computer algebra library

|-glui/ GUI widget library

|-InSituLib/ Particle generation library

 |-struct/ For the structured grid

 |-AMR/ For the AMR grid

 |-unstruct/ For the unstructured grid

|-KVS/ KVS library

|-shell/ Sample shell script for supercomputer

 11

３ Build

The source package build is controlled by editing the configuration file pbvr.conf according to the
user’s environment. Table ３-1 shows a list of the variables specified in pbvr.conf. Table ３-2 shows a
list of build configuration files that can be used as the value of PBVR_MACHINE.

Table ３-1 Variables defined in pbvr.conf

Variable Input Explanation

PBVR_MACHINE Literal Build setting file name located in arch

PBVR_MAKE_CLIENT 0 or 1
0 ⇒ Building daemon and particle sampler
1 ⇒ Building PBVR client

Table ３-2 Build setting files

File name Explanation

Makefile_machine_gcc gcc compiler build setting

Makefile_machine_gcc_omp gcc compiler +OpenMP build setting

Makefile_machine_gcc_mpi_omp gcc compiler +MPI+OpenMP build setting

Makefile_machine_intel intel compiler build setting

Makefile_machine_intel_omp intel compiler +OpenMP build setting

Makefile_machine_intel_mpi_omp intel compiler +MPI+OpenMP build setting

Makefile_machine_fujitsu fujitsu compiler build setting

Makefile_machine_fujitsu_omp fujitsu compiler+OpenMP build setting

Makefile_machine_fujitsu_mpi_omp fujitsu compiler+OpenMP+MPI build setting

Makefile_machine_icex ICEX compiler build setting

Makefile_machine_icex_omp ICEX compiler+OpenMP build setting

Makefile_machine_icex_mpi_omp ICEX compiler+OpenMP+MPI build setting

Makefile_machine_jknl_omp KNL compiler+OpenMP build setting

Makefile_machine_jknl_mpi_omp KNL compiler+OpenMP+MPI build setting

３.１. Daemon and Particle Sampler
The steps to build a daemon and particle sampler library from a source package are shown below.

The file download destination in the following procedure is $ HOME / JAEA. Moreover, the particle

sampler is linked to the test simulation code, attached to the source package after the library build.

① Unzip pbvr_inSitu_1.00.tar.gz.

$ cd $HOME/JAEA

$ tar xvfz pbvr_inSitu_1.00.tar.gz

 12

② Edit pbvr_inSitu_1.00/pbvr.conf and specify the build setting.

PBVR_MACHINE ⇒ Specify setting the file name in pbvr_inSitu_1.00/arch
PBVR_MAKE_CLIENT ⇒ Specify 0 (for daemon and particle sampler)

③ The KVS library is built using OpenGL and GLUT functions, disabled when
PBVR_MAKE_CLIENT = 0, and using the OpenGL and GLUT functions, enabled when
PBVR_MAKE_CLIENT = 1. Therefore, if you build the client just before, you need to execute the
following command to rebuild the KVS:

④ Build the whole package at the root of the source tree.

This build generates load modules for daemon and particle sampler in Table ３-3.

Table ３-3 Load modules of daemon and particle sampler

Directory Load module Explanation
KVS libkvsCore.a KVS library providing particle format and

visualization functions

Common libpbvrCommon.a Communication library providing protocol for socket
communication

Daemon pbvr_daemon Daemon

FuctionParser libpbvrFunc.a Computer algebra library

InsituLib/struct libInSituPBVR.a Particle sampler

InsituLib/unstruct libInSituPBVR.a Particle sampler

InsituLib/AMR libInSituPBVR.a Particle sampler

⑤ The particle sampler coupled to the simulation code is coupled to the particle sampler, and the
above libraries are linked to build the load module.

$ cd $HOME/JAEA/pbvr_inSitu_1.00/Example/C/Hydrogen_struct

$ make

For building the user's simulation code, the reference as well as the link of the KVS library, computer

algebra library, and particle sampler are required. Below is an example of a Makefile:

$ cd $HOME/JAEA/pbvr_inSitu_1.00

$ cat pbvr.conf

PBVR_MACHINE=Makefile_machine_gcc_mpi_omp

PBVR_MAKE_CLIENT=0

$ cd $HOME/JAEA/pbvr_inSitu_1.00/KVS

$ make all_clean

$ make

$ cd $HOME/JAEA/pbvr_inSitu_1.00

$ make

 13

PBVR_DIR = ../../..

include ${PBVR_DIR}/pbvr.conf

include ${PBVR_DIR}/arch/${PBVR_MACHINE}

KVS_SOURCE_DIR = ${PBVR_DIR}/KVS/Source

FUNC_DIR = ${PBVR_DIR}/FunctionParser

INSITU_DIR = ${PBVR_DIR}/InSituLib/struct

CXXFLAGS += -I${INSITU_DIR} \

 -I${FUNC_DIR} \

 -I${KVS_SOURCE_DIR}

LDFLAGS += -L${INSITU_DIR} -lInSituPBVR \

 -L${FUNC_DIR} -lpbvrFunc \

 -L${KVS_SOURCE_DIR}/Core/Release -lkvsCore

all: $(TARGET)

$(TARGET): $(TEST_OBJS)

 $(LD) -o $@ $^ $(LDFLAGS)

.cpp.o:

 $(CXX) $(CXXFLAGS) -o $@ -c $<

３.２. PBVR Client
The procedure followed to build the PBVR client from the source package is presented in this

section. The installation of OpenGL and GLUT is required to build the PBVR client. The build procedure
depends on the environment (Linux/Mac, Windows). The build of the PBVR client generates the load
module shown in Table ３-4.

Table ３-4 Load module of the PBVR client

Directory Load module Explanation
KVS libkvsCore.a KVS library providing particle format and

visualization functions

Common libpbvrCommon.a Communication library providing protocol for socket
communication

FuctionParser libpbvrFunc.a Computer algebra library

glui libglui.a GLUI library providing GUI widget

Client pbvr_client PBVR client

３.２.１. Linux・Mac
Below are the steps to build a PBVR client on Linux and Mac. The file download destination in the

following steps is $ HOME / JAEA:

① Unzip pbvr_inSitu_1.00.tar.gz.

 14

② Edit pbvr_inSitu_1.00/pbvr.conf and specify the build setting.

PBVR_MACHINE ⇒ Specify setting the file name in pbvr_inSitu_1.00/arch
PBVR_MAKE_CLIENT ⇒ Specify 1 (for the PBVR Client)

③ The KVS library is built using OpenGL and GLUT, which is disabled when
PBVR_MAKE_CLIENT = 0, and using OpenGL and GLUT, which is enabled when

PBVR_MAKE_CLIENT = 1. Therefore, if the daemon/particle sampler was built just before, the
following command for rebuilding the KVS must be executed:

④ Build the whole code at the root of the source tree.

The PBVR client load module is created within the Client directory.

３.２.２. Windows
The following procedure is used to build the PBVR client in the Windows environment. The file

download destination in the following procedure is $ HOME / JAEA:

① Unzip pbvr_inSitu_1.00.tar.gz/.

② Download glut-3.7.6-bin_x64.zip from the following web page:
[About OpenGL/GLUT]

http://ktm11.eng.shizuoka.ac.jp/lesson/modeling.html

③ Unzip glut-3.7.6-bin_x64.zip and locate it on the following directory.

④ Open the following file with Microsoft Visual Studio 2017.

$ cd $HOME/JAEA

$ tar xvfz pbvr_inSitu_1.00.tar.gz

$ cd $HOME/JAEA/pbvr_inSitu_1.00

$ cat pbvr.conf

PBVR_MACHINE=Makefile_machine_gcc_mpi_omp

PBVR_MAKE_CLIENT=1

$ cd $HOME/JAEA/pbvr_inSitu_1.00/KVS

$ make all_clean

$ make

$ cd $HOME/JAEA/pbvr_inSitu_1.00

$ make

pbvr_inSitu_1.00.tar.gz ⇒ C:\pbvr

C:\pbvr\glut-3.7.6\include\GL\glut.h

C:\pbvr\glut-3.7.6\lib\glut32.lib

 15

⑤ Choose Release and x64 from the pull-down list, as shown in Figure ３-1.

Figure ３-1 Build configuration of VisualStudio2017 for the PBVR client

⑥ Go to the menu Build > Build Solution.
⑦ Place glut32.dll, extracted in step 3 above, in the following directory:

C:\pbvr\pbvr_inSitu_1.00\pbvr.sln

C:\pbvr\pbvr_inSitu_1.00\x64\Release\glut32.dll

 16

４ Setup of In−situ Visualization

The collaboration of the particle sampler coupled to the simulation, the daemon operating on the
interactive node, and the PBVR client on the user PC interactively help visualize the batch-processed
simulation. For this purpose, certain simple configurations and port forwarding connections are

required.

４.１. Setting Environment Variables
The daemon and the particle sampler that use the environment variables are shown in Table 4-1

below. At runtime, one must set the environment variables with the export command.

Table ４-1 Environment variables referenced by the daemon and the particle sampler

Env. var. Explanation
VIS_PARAM_DIR Directory placed the transfer function file (visualization param.)※1

PARTICLE_DIR Destination directory for the particle files generated by particle sampler※1

TF_NAME File name of the transfer function (without extension)※2

※１ If not specified, the daemon and the particle sampler will search the current directory in which

each is running.
※２ If not specified, the daemon and the particle sampler adopt default.tf as the transfer function
name.

４.２. Setting of Visualization Parameters
When the particle sampler converts volume data into visualization particle data, visualization

parameters (e.g., transfer function, a range of physical values to be visualized, and a screen resolution)
are required. Each item of the visualization parameters is described on a tag basis in the transfer
function file. The user can use default.tf, stored in the example of the source package, as the transfer

function file for the first startup.
The user needs to place the transfer function file in the directory specified by VIS_PARAM_DIR

(shown in Table ４-1) with the file name specified by TF_NAME to execute the in-situ PBVR.
The user can edit the contents of the transfer function file by the GUI by activating the daemon and

the PBVR client. The transfer function file specified by the environment variable is then read by the
daemon, displayed on the PBVR client, and overwritten after editing.

４.３. Port Forwarding Connection
The particle data and visualization parameters are sent and received by socket communication

between the daemon and the PBVR client. For performing socket communication between the
interactive node on the remote supercomputer and the local PC, the user is required to connect both
ports using ssh port forwarding.

 17

４.３.１. Remote Connection between Tow Machines
The following example shows how to connect local machineA to a remote machine using port

forwarding:

machineA> ssh -L portnumA:hostnameB:portnumB username@machineB

In the above command, portnumA is the port number of machineA; hostnameB is the host name of

machineB; and portnumB is the port number of machineB. Often, hostnameB is displayed on the
terminal of machine B and can be confirmed by the hostname command. If port forwarding is permitted
on the login node of machine B, there is no need to enter a special host name for hostname B;
however, a localhost can be used.

４.３.２. Remote Connection with Several Machines
This section provides an example of connecting the PBVR server and the PBVR client to two remote

machines “machineA” and “machineB” via “machineC” for some reason (e.g., security). Once the SSH
port forwading is established, the launching method is basically the same as the stand-alone mode,
similar to the two-point remote connection mentioned earlier.

Step 1 [SSH port forwarding A -> C]

machineA> ssh -L 60000:localhost:60000 username@machineC

(Forwarding the 60000 port of machineA to the 60000 port of machineC)

Step 2 [SSH port forwarding C -> B]

machineC> ssh -L 60000:localhost:60000 username@machineB

(Forwarding the 60000 port of machineC to the 60000 port of machineB)

４.４. Launching Daemon and Port Forwarding
The daemon is started at an interactive node or job and performs socket communication using the

PBVR client. The user performs ssh port forwarding from the terminal on your PC to the interactive

node, moves to the directory where the daemon load module is located, and starts the daemon as
follows:

$./pbvr_daemon

first reading time[ms]:0

Server initialize done

Server bind done

Server listen done

Waiting for connection ...

As described above, start the PBVR client from another terminal when waiting for the socket

communication connection with the client. The default port number at the daemon startup is 60000. The
port number can be changed using the command line option -p at startup, as shown below:

$./pbvr_daemon –p 71000

 18

The daemon aggregates particle files and updates transfer function files with reference to the

environment variables. The daemon then sends and receives data using the PBVR client through the
port specified at startup.

 19

５ Particle Sampler

The particle sampler can generate particles for in-situ visualization by inserting the
generate_particles function into the simulation code. This function is defined in kvs_wrapper.h and can
be used by referencing and linking particle generation libraries.

The particle sampler is executed using batch processing of the simulation and converts the
calculated volume data to the particle data by referring to the environment variables (Section ４.１)
and the transfer function file (Section ４.２). In the directory specified by PARTICLE_DIR, the particle
sampler outputs a particle data file and a t_pfi_coords_minmax.txt file using the maximum and

minimum coordinates of the area. The particle data file comprises a header file (kvsml), a coordinate
file (coord.dat), a color file (color.dat), and a normal file (normal.dat) that outputs one set per node at
each time step. At the same time, the particle sampler outputs the $TF_NAME_timestep.tf file recording
history of the transfer function change, history_timestep.txt file recording the histogram, and the range

of physical values (state.txt) that record the time step interval in VIS_PARAM_DIR.

５.１. Particle Generation Function for Structured Grid
#include “kvs_wrapper.h”
void generate_particles(

int time_step, domain_patameters dom, Typs** volume_data, int num_volume_data);

This function takes as arguments the time step of simulation, information on calculation area, and the
volume data of the simulation result.

・ int time_step: simulation time step
・ domain_patameters dom: data structure defines the following calculation domain:

 typedef struct
 {
 float x_global_min; // Minimum of x coordinates in whole domain
 float y_global_min; // Minimum of y coordinates in whole domain

 float z_global_min; // Minimum of z coordinates in whole domain
 float x_global_max; // Maximum of x coordinates in whole domain
 float y_global_max; // Maximum of ycoordinates in whole domain
 float z_global_max; // Maximum of z coordinates in whole domain

 float x_min; // Minimum of x coordinates in subdomain
 float y_min; // Minimum of y coordinates in subdomain
 float z_min; // Minimum of z coordinates in subdomain
 int* resolution; // Pointer to int resolution[3]

 float cell_length; //Length of a cell
 } domain_parameters;

・ Typs ** volume_data: a pointer to an array of volume data of simulation results. “Type” is a type of
a user-specified physical value, while multi-variable volume data are defined as a two-dimensional

 20

array. In the volume data of lattice resolution (X, Y, Z), the value of the position (i, j, k) of the n-th

variable is referred to as volume_data [n] [i + j * X + k * X * Y].

・ int num_volume_data: number of volume data

５.２. Particle Generation Function for Unstructured Grid
#include “kvs_wrapper.h”

void generate_particles(
int time_step, domain_parameters dom, Type** values, int nvariables, float* coordinates,
int ncoords, unsigned int* connections, int ncells);

This function considers as arguments the time step of the simulation and information on the
calculation area, the volume data of the simulation result, and the lattice information of the unstructured
lattice.

・ int time_step: simulation time step
・ domain_patameters dom: data structure defines the following calculation domain:

 typedef struct

 {
 float x_global_min; // Minimum of x coordinates in whole domain
 float y_global_min; // Minimum of y coordinates in whole domain
 float z_global_min; // Minimum of z coordinates in whole domain

 float x_global_max; // Maximum of x coordinates in whole domain
 float y_global_max; // Maximum of ycoordinates in whole domain
 float z_global_max; // Maximum of z coordinates in whole domain
 } domain_parameters;

・ Typs ** volume_data: a pointer to an array of volume data of simulation results. “Type” is a type of
user-specified physical value. Multi-variable volume data are defined as a two-dimensional array.
The value on the cell vertex of the nth variable is referred to as volume_data [n] [cell].

・ float* coordinates: pointer to an array of vertex coordinates. The i-th vertex coordinates (x, y, z) are
referenced by (coordinates [3 * i], coordinates [3 * i + 1], and coordinates [3 * i + 2]).

・ int ncoords: number of coordinates
・ unsigned int * connections: a pointer to the connection list of vertex IDs that form a hexahedral

element. Figure ５-1 shows the hexahedral element configuration. The n-th vertex of the i-th
hexahedral element is referred to by connections [6 * i + n].

・ int ncells: number of elements

0

1 2

3

4

5 6

7

 21

Figure ５-1 Connection of the vertices of a hexahedral element

５.３. Particle Generation Function for AMR Grid
In-situ PBVR supports block-structured AMR, which is optimized for the memory layout of many-core

computers. In this type of a grid, an orthogonal grid of N3 is defined as a unit of the minimum processing

area, called “leaf,” and leaves of different sizes are connected in each layer. Therefore, the
block-structured AMR is defined as a four-dimensional grid of NxNxNxL (L is the number of leaves).
Figure ５-2 shows a two-dimensional example.

Figure ５-2 Example of a two-dimensional hierarchical grid. The upper part is the lattice of the
hierarchy Lv. 1, while the lower part is the hierarchy Lv. 2. The leaf is defined by a 2 × 2 orthogonal grid.
Red is a leaf of Lv. 1, while blue is a leaf of Lv. 2.

#include “kvs_wrapper.h”
void generate_particles(

int time_step, domain_patameters dom,

std::vector<float>& leaf_length,
std::vector<float>& leaf_min_coord,
int nvariables, float** values);

This function takes as arguments the time step of the simulation, the information of the calculation
area, the configuration information of the hierarchical lattice, and the volume data of the simulation
result.

・ int time_step: simulation time step
・ domain_patameters dom: data structure defines the following calculation domain:

 22

 typedef struct

 {
 float x_global_min; // Minimum of x coordinates in whole domain
 float y_global_min; // Minimum of y coordinates in whole domain
 float z_global_min; // Minimum of z coordinates in whole domain

 float x_global_max; // Maximum of x coordinates in whole domain
 float y_global_max; // Maximum of ycoordinates in whole domain
 float z_global_max; // Maximum of z coordinates in whole domain
 int* resolution; // Pointer to int resolution[4]

 } domain_parameters;

・
・ std::vector<float>& leaf_length: a reference to an array of leaf lengths; the length of the l-th leaf is

referred to as leaf_length [l].

・ std::vector<float>& leaf_min_coord: a reference to an array of leaf minimum position coordinates;
the coordinates of the l-th leaf are referenced to as leaf_min_coord [3 * l], leaf_min_coord [3 * l +
1], and leaf_min_coord [3 * l + 2].

・ float** values: pointer to the array of resulting volume data; multivariate volume data are defined
as a two-dimensional array; and in the volume data of the grid resolution (X, Y, Z, L), the value of
the position (i, j, k, l) of the nth variable is values [n] [i + j * X + k * X * Y Refer to + l * X * Y * Z].

・ int nvariables: number of variables

５.４. Connection into Simulation Code
In-situ visualization is possible by compiling the generate_particles function into the simulation code

of the user. This chapter shows the procedure for connecting the particle sampler to the test simulation

code as an example. The test simulation code calculates the value of the charge density on the lattice
vertex at each time step using the charge density equation of hydrogen. Therefore, the class name to
be calculated is Hydrogen. The code without the particle sampler integration is as follows:

#include "Hydrogen.h"
#include <iostream>
#include <mpi.h>
int main(int argc, char** argv)
{
 MPI_Init(&argc, &argv);
 Hydrogen hydro;
 int time_step = 0;
 for(;;)
 {
 hydro.values;
 time_step++;
 }
 MPI_Finalize();
 return 0 ;
}

 23

In the above source code, the Hydrogen class outputs the volume data of each time step in

hydro.values for the loop.

５.４.１. Domain Information and Particle Generation Function
The generate_particles function obtains domain information through the structure

domain_parameters. The user needs to copy the area information obtained from the simulation code to
the structure.

int mpi_rank;
 MPI_Comm_rank(MPI_COMM_WORLD, &(mpi_rank));

int resol[3] = { hydro.resolution.x(), hydro.resolution.y(), hydro.resolution.z() };
 domain_parameters dom = {

 hydro.global_min_coord.x(),
 hydro.global_min_coord.y(),
 hydro.global_min_coord.z(),
 hydro.global_max_coord.x(),

 hydro.global_max_coord.y(),
 hydro.global_max_coord.z(),
 hydro.global_region[mpi_rank].x(),
 hydro.global_region[mpi_rank].y(),

 0.0,
 resol,
 hydro.cell_length
 };

In the above code, the rank number of the MPI is used to calculate the area of the Hydrogen
subdomain. The domain information, resolution, MPI rank, and volume data become the arguments of
the generate_particles function. The generate_particles function is called after the simulation inside the
time step loop. In the case of Hydrogen, it is inserted as follows:

 int time_step = 0;
 for(;;) {
 generate_particles(time_step, dom, hydro.values, hydro.nvariables)
 time_step++;
 }

 24

６ PBVR Client

In the default mode, the PBVR client draws the particle data of the latest time step received from the
daemon. The viewer of the PBVR client draws the particle data using OpenGL. Then, the PBVR client
provides a GUI to edit the visualization parameters, including transfer functions, and sends the

visualization parameters to the daemon. Note that sending and receiving data between the daemon
and the PBVR client is performed through an arbitrary port number via socket communication.

６.１. Launching PBVR Client
The following examples show how to launch the PBVR client:

$ pbvr_client [command line options]

Table ６-1 Command line options for the PBVR client

option value default explanation

-p Port number 60000 port number

-viewer 100 ～ 9999 ×

100～9999

620×620 resolution of PBVR client

-shading {L/P/B},ka,kd,ks,n - shading method ※1

※1. This argument specifies the shading parameters.

L: Lambert Shading
This method ignores specular reflection in the shading process.
Parameters “ka” and “kd” are the coefficients for ambient and diffusion, respectively,
which can have a value between 0 and 1.

P：Phong Shading
This method adds specular reflection to Lambert shading. Phong shading imitates
smooth metal and mirrors, which is is sometimes called highlight.
Parameters “ka,” “kd,” and “ks” (coefficients for specular reflection lying between 0 and
1) and “n” (strength of highlight lying between 0 and 100) are used.

B：Blinn–Phong Shading
This is a shading model that simplifies Phong shading using the existing parameters,
i.e., “ka,” “kd,” “ks,” and “n”.

６.２. Terminating of PBVR Client
The PBVR client is terminated by pressing Ctrl + c on the console where you started the program.

When you press Ctrl + c, the PBVR client synchronizes with the daemon at the time of the time update,
and both end. However, the Ctrl + c key input is ignored if communication is interrupted with the Stop

button on the time step control panel. Note also that if you terminate the daemon with Ctrl + c, you will
not be able to terminate the PBVR client with Ctrl + c.

 25

６.２.１. Forced Termination
If the PBVR client and the daemon are not terminated by pressing Ctrl + c, forced termination is

required using the kill command with the process numbers of the client and the daemon by the ps
command, as shown below:

【Forced termination of the PBVR client】

$ ps -C PBVRViewer

 PID TTY TIME CMD

19582 pts/6 00:00:00 PBVRViewer

$ kill -9 19582

【Forced termination of the daemon】
$ ps -C CPUServer

 PID TTY TIME CMD

19539 pts/5 00:00:00 CPUServer

$ kill -9 19539

 26

６.３. Using PBVR Client GUI
６.３.１. Viewer
As shown in Figure ６-1, the Viewer displays the rendering result of the particle data.

Figure ６-1 Viewer

[Operations]

Rotation: mouse left-dragging
Translation: mouse right-dragging
Zoom: Shift + left-dragging or dragging while pressing the mouse wheel
Reset: home button (fn + left arrow on Mac)

[Display]
time step: time step of the displayed data
fps: frame rate [frame/s]

６.３.２. Main Panel
Figure ６-2 shows the main panel of the PBVR client. The items in the panel are described below:

 27

Figure ６-2 Main panel

 ・PARTICLE DENSITY
 specifies the particle density related to the image depth
 ・PARTICLE LIMIT

specifies the maximum number of particles generated in the PBVR server. Use this to avoid
the explosive increase of the number of particles (e.g., caused by the false settings of a
transfer function). The number is multiplied by 106

 ・RESOLUTION

 specifies the Viewer’s resolution
 ・Transfer Function Editor
 displays the Transfer Function Editor described in the next section
 ・Particle Panel
 displays the Particle Panel described in the next section
 ・Animation Control Panel
 displays the Animation Control Panel described in the next section
 ・SENDING

 shows the progress of data transfer to the server program
 ・RECEIVING
 shows the progress of data transfer from the server program
 ・CPU MEMORY

 displays the system memory usage in megabytes
 ・GPU MEMORY

 28

displays the GPU memory usage in megabytes

Set parameter
 sends parameters specified in the “Main panel” to the server program

 29

６.３.３. Transfer Function Editor
The Transfer Function Editor edits the transfer functions, which assigns color/opacity to each

scalar value for volume rendering. It is activated by hitting the Transfer Function Editor button in the
Main panel. In standard volume rendering, a transfer function is defined by only one physical quantity;
however, the PBVR provides a new multi-dimensional transfer function design, which has the following

three features:

1) Assign two independent variable quantities to color and opacity.
2) Define each variable quantity with an arbitrary function of the X–Y–Z coordinates and

variables q1, q2, q3…
3) Using an algebraic equation, synthesize a multidimensional transfer function from the

one-dimensional transfer functions defined by color functions C1, C2…. and opacity
functions O1, O2,… .

This new transfer function design adds significant flexibility to visualization. Figure ６-3 shows the

Transfer Function Editor. Each item in the panel is explained below:

Figure ６-3 Transfer Function Editor

 30

[Operations]

Scale change in histogram: drag the mouse up/down on the Histogram

 ・Transfer Function RESOLUTION
 specifies the resolution of the transfer function

 ・Number Transfer Functions
specifies the limit number of the transfer functions that can be created

 ・Color Function SYNTHESIZER
specifies the composition formula of the transfer color functions created under the names C1

to C [N] *1
・Opacity Function SYNTHESIZER

specifies the composition formula of the transfer opacity functions created under the names
O1 to O [N] *1

 ・Reset
resets the panel

 ・Apply
sends a transfer function defined with this panel to the server

 ・File Path
 specifies a file path for saving and loading a transfer function file
 ・Export File

saves a transfer function defined with this panel to a file in the same format as the parameter

file specified with the command line option “-pa”
 ・Import File

loads a transfer function stored in a file to this panel
 ・Close

closes the Transfer Function Editor
*1 [N] is the value of the limit number of the transfer function specified by the Number Transfer
Functions.

 31

６.３.３.１ Color Map Editor Panel

[Transfer Function Color Map category]

creates and displays the transfer function corresponding to the transfer color function name
described in the transfer function synthesis formula of the Color Function SYNTHESIZER

Figure ６-4 Transfer Function Color Map Category

・Color Function Editor
displays the Color Function Editor screen and creates and selects the transfer color function of

C1 to C [N]. *1
・Color Map Function

creates and displays the transfer color function by the name of C1 to C [N]. *1 and defines the
(synthesized) variable quantity used for the color of the selected transfer function. An equation

can be entered while the following variables are available:
 Physical quantities: q1, q2, q3, .., qn.
 Coordinate values: X, Y, and Z.

・Range Min

specifies the minimum value of the specified variable quantity
・Range Max

specifies the maximum value of the specified variable quantity
・Server side range min

displays the minimum value of the (synthesized) variable quantity obtained in the server
program

・Server side range max
displays the maximum value of the (synthesized) variable quantity obtained in the server

program
・Color Map Editor (freeform curve)

 32

displays a sub-panel that specifies a transfer function with a freeform curve (use the mouse to

edit the freeform curve)
・Color Map Editor (expression) button

displays a panel that creates the transfer functions of the variables and colors corresponding
to the selected transfer function names by the numerical formula description

・Color Map Editor (control points) button
displays a panel that creates the transfer functions of the variables and colors corresponding
to the selected transfer function names using control point designation.

・Color Map Editor (selsect colormap) button

displays a panel that creates the variables and color transfer functions corresponding to the
selected transfer function name by selecting them from the color bars prepared in advance.

・Color
The color bar of the variable and color transfer function created by this editor is displayed.

*1 [N] is the value of the limit number of the transfer function specified by the Number Transfer
Functions.

６.３.３.１.１. Color Function Editor

Using the Color Function Editor button, display the Color Function Editor screen and create and

select the transfer color function of C1 to C [N].
[N] is the value of the limit number of the transfer function specified by the Number Transfer

Functions.

Figure ６-5 Color Function Editor screen

・Color Function List
display the created transfer function

・Function
 enter the transfer function. (C [N] = f (variable)
・Edit button
 reflect on the Color Function List

 33

・Save button
 apply the transfer function of the Color Function List
・Select Button

apply the transfer function of the Color Function List and select the transfer function of the list
selection

６.３.３.１.２. Color Map Editor

Use a color map editor (freedom curve) button to display a panel that creates a transfer function of

the variable and color corresponding to the selected transfer function name with a free curved line input
by mouse.

Figure ６-6Color Map Editor (freedom curve)

・Color palette
specifies the saturation, brightness, and hue of a color with the mouse cursor. On the left, the

horizontal and vertical axes correspond to the saturation and brightness, respectively, while
the neighboring bar shows the hue.

・RGB
specifies the hue of the color by placing a mouse cursor. The upper-right box displays the

color created by the Color palette and the RGB bar.
・Color

blends the colors in the Color area with a color specified with the Color palette and the RGB
bar. To specify the locations in the Color area, trace the locations by dragging the mouse

cursor while pressing the left mouse button. The blending ratio of the original and
overpainting colors is determined by the mouse cursor’s vertical position. For example, when
the upper edge of the color bar is traced from left to right, the Color bar is completely painted
by the specified color rather than by the blended colors. Similarly, when the vertical center line

of the Color bar is traced, the colors are replaced with the blended colors with 50% of the
original color and 50% of the specified color.

・Reset

 34

resets the panel

・Undo
undoes the last mouse action

・Redo
redoes the last mouse action undone

・Save
saves the transfer function

・Cancel
closes the panel

６.３.３.１.３. Color Map Editor (expression)

Use a color map editor (expression) button to display a panel to create a transfer function by
considering the equations as input.

Figure ６-7 Color Map Editor (expression)

・Color
displays a color bar of a transfer function created in this panel

・R
describes a transfer function of the R component of the color

・G
describes a transfer function of the G component of the color

・B
describes a transfer function of the B component of the color

・Save button
saves a transfer function created in this panel

・Cancel
closes the panel

 35

６.３.３.１.４. Color Map Editor (control points)

Use a color map editor (control points) button to display a panel for creating a transfer function. This
editor considers control points as input.

Figure ６-8 Color Map Editor (control points)

・Color
displays a color bar for the transfer function that is being defined with this panel

・Control Point
specifies the values of (up to 10) control points with the fields CP1)–10)

・Red
specifies the R component of the color at the control points

・Green
specifies the G component of the color at the control points

・Blue
specifies the B component of the color at the control points

・Save
saves the transfer function

・Cancel
closes the panel

 36

６.３.３.１.５. Color Map Editor (select colormap)

Use a color map editor (select colormap) button to display a panel to create a transfer function from
the preset color bar templates.

Figure ６-9 Color Map Editor (select colormap)

・Color
displays the color bar of the transfer function that is being created with this panel

・Default Color
selects a color bar to be set as the transfer function. The following templates are available:
Rainbow

Blue-white-red
Black-red-yellow-white
Black-blue-violet-yellow-white
Black-yellow-white

Blue-green-red
Green-red-violet
Green-blue-white
HSV model

Gray-scale
Black
White

・Save

saves the transfer function created with this panel
・Cancel

closes the panel

 37

６.３.３.２ Opacity Editor

[Transfer Function Opacity Map Category】

The GUI components in this category set a variable quantity and color for the transfer function
specified with the Transfer Function Name field.

Figure ６-10 Transfer Fuction Opacity Map Category

・Opacity Function Editor Button
displays the Opacity Function Editor screen and creates and selects the transmission opacity
function of O1 to O [N]. *1

・Opacity Map Function

defines the (synthesized) variable quantity used for the opacity of the selected transfer
function An equation can be entered while the following variables are available:
 Physical quantities: q1, q2, q3, .., qn
 Coordinate values: X, Y, and Z

・Range Min
specifies the minimum value of the variable quantity

・Range Max
specifies the maximum value of the variable quantity

・Server side range min
displays the minimum value of the (synthesized) variable quantity obtained in the server
program

・Server side range max

displays the maximum value of the (synthesized) variable quantity obtained in the server
program

・Opacity Map Editor (freeform curve) button

displays a panel for creating a transfer function with a freeform curve (use the mouse to edit
the freeform curve)

 38

・Opacity Map Editor (expression) button
displays a panel for creating a transfer function of the variable and opacity corresponding to
the selected transfer function name using a mathematical formula description

・Opacity Map Editor (control point) button

displays a panel for creating a transfer function of the variable and opacity corresponding to
the selected transfer function name using a control point designation

・Opacity
displays the transfer function curve of the variable and opacity created with this editor

*1 [N] is the value of the limit number of the transfer function specified by the Number Transfer
Functions.

６.３.３.２.１. Opacity Function Editor

Use the Opacity Function Editor button to display a panel to create and select the transmission

opacity function of O1 to O [N].
[N] is the value of the limit number of the transfer function specified by the Number Transfer

Functions.

Figure ６-11 Opacity Function Editor

・Opacity Function List

 displays the created transfer function
・Function

enter the transfer function (O [N] = f (variable)
・Edit Button

reflects on the Opacity Function List
・Save button
 applies the transfer function of the Opacity Function List
・Select button

 39

applies the transfer function of the Opacity Function List and selects the transfer function of

the list selection

 40

６.３.３.２.２. Opacity Map Editor (freedom curve)

Use the Opacity Map Editor button to display a panel to create a transfer function of the variable and

opacity corresponding to the selected transfer function name with the free-form curve input using a
mouse.

Figure ６-12 Opacity Map Editor (freeform curve)

・Opacity
specifies a transfer function for the opacity. A freeform curve is drawn by dragging the mouse
while holding the left mouse button. A piecewise linear curve is drawn by specifying the control

points with right clicks.
・Reset

resets the panel
・Undo

undoes the last mouse action
・Redo

redoes the last mouse action undone
・Save

saves the transfer function created with this panel
・Cancel

closes the panel

 41

６.３.３.２.３. Opacity Map Editor (expression)

Use the Opacity Map Editor (expression) button to display a panel to create a transfer function using

equations.

Figure ６-13 Opacity Map Editor (expression)

・Opacity
displays the transfer function for the opacity specified by the equation in field O

・O
secifies the equation for the curve that specifies the transfer function of opacity

・Save
saves the transfer function created with this panel

・Cancel
closes the panel

 42

６.３.３.２.４. Opacity Map Editor (control point)

Use the Opacity Map Editor (control points) button to display a panel to create a transfer function by

taking equations as input.

Figure ６-14 Opacity Map Editor (control points)

・Opacity (on the top)
displays the transfer function for the opacities specified in this panel

・Control Point
specifies the values of (up to 10) control points in the fields CP1)–10)

・Opacity (on the bottom right)
specifies the opacities at the control points

・Save
saves the transfer function created with this panel

・Cancel
closes the panel

 43

６.３.３.３ Function Editor

Table ６-2 lists the built-in math operations available in the function editor, which can be used to
synthesize the transfer functions and variable quantities and define the colormap/opacity curves.

Table ６-2 Math operations in the function editors

Math operation In function editors

+ +

- -

× *

/ /

Sin sin(x)

Cosin cos(x)

Tangent tan(x)

Logarithm log(x)

Exponential exp(x)

Square root sqrt(x)

Power x^y

When NaN appears by the arithmetic processing of the function editor, PBVR outputs the error

message and stops the drawing process.

 44

６.３.４. Time Panel
Figure ６-15 shows the Time panel that specifies the time steps for visualization. Each widget works

as described in the following:

Figure ６-15 Time panel

 ・Time step
 specifies the time step of the data to be rendered

 ・Last step (check box)
 rendering the latest step particle

 ・Start/Stop
 starts/stops the communication between the PBVR client and the PBVR server

When the button is red, communication is stopped, while when it is gray, communication is in
progress.

 45

６.３.５. Particle Panel

Figure ６-16 shows the Particle panel that integrates multiple particle datasets. The particle panel

is activated by hitting the Particle panel button in the Main panel. Each widget works as described in the
following:

Figure ６-16 Particle panel

・Display Particle
 shows a list of particle datasets sent from the PBVR server or are loaded from local files
(maximum: 10 files)

1) Server check box
activated when a particle dataset from the PBVR server is integrated with the local particle

data sets. This checkbox is not available in stand-alone mode.

2) (Particle1)–(Particle10) check box

activated when the particle data sets loaded from the local files are integrated. The checkbox
is not available before the particle data sets are loaded via the Particle file panel or command
line options –pin1, -pin2, …, -pin10.

・Keep Initial Step

 46

specify particle data sets, in which the initial step data are displayed before the time series

starts, when the integrated particle datasets start from different time steps
・Keep Final Step

specify particle data sets, in which the final step data are displayed after the time series ends,
when integrated particle datasets end at different time steps

・Particle File (Add/Export)
open the Particle File sub-panel

・Delete Particle
specify a particle data set to be deleted from a list in the Display Particle

・Delete
delete a particle data set

・Close
close Particle panel

The behavior of the particle integration is explained using the example listed in Table ６-3. All time
steps are listed in Table ６-4 when both Server and Particle check box are checked. The first time step

is kept displayed as shown in Table ６-5 in case of a checked Keep Initial Step in Client. In case of a
checked Keep Final Step in Client, the last time step is keep displayed as shown in Table ６-6.

Table ６-3 List of server’s and client’s particles in five time steps.

 step0 step1 step2 step3 step4

Server 〇 〇 〇 〇

Client 〇 〇 〇 〇

Table ６-4 Particle’s time steps displayed in default.

 step0 step1 step2 step3 step4

Server × 1 2 3 4

Client 0 1 2 3 ×

Table ６-5 Particle’s time steps displayed with Keep Initial Step.

 step0 step1 step2 step3 step4

Server × 1 2 3 4

Client 0 0 0 0 0

Table ６-6 Particle’s time steps displayed with Keep Final Step.

 step0 step1 step2 step3 step4

Server × 1 2 3 4

Client 3 3 3 3 3

 47

６.３.５.１ Particle File sub-panel

The Particle File panel is a panel for reading and writing particle data files. This panel is shown

when the Particle File button is hit.

Figure ６-17 Particle File panel

・Close
close Particle File panel.

【Add Particle categoly】
・Add Item

specifies a particle data slot, in which a new particle dataset is loaded. When an old particle
data set exists for the particle data slot, the slot is overwritten by a new particle data set

・File path
specifies a particle data file

・Browse
opens a file dialog for specifying the path to a visualization parameter file

・Particle name (Optional)
specifies the name of a particle dataset shown in the Particle panel

・Add
adds a particle dataset to the Particle panel

【Export Particle Categoly】
・File path
 specifies a particle data file
・Browse

 opens a file dialog for specifying the path to a visualization parameter file
・Export

outputs integrated particle data

 48

６.３.５.２ Saving Particle Data

The particle data are stored using the Particle File panel in the Particle panel. The following is an

example specification of the particle data file name, in which the prefix is p1, and the following files are
generated:

./particle/p1_XXXXX_YYYYYYY_ZZZZZZZ.kvsml

./particle/p1_XXXXX_YYYYYYY_ZZZZZZZ_colors.dat

./particle/p1_XXXXX_YYYYYYY_ZZZZZZZ_coords.dat

./particle/p1_XXXXX_YYYYYYY_ZZZZZZZ_normals.dat

Here, XXXXX indicates time; YYYYYYY indicates subvolume number; ZZZZZZZ indicates the total

number of subvolumes; and the colors, coords, and normals indicate the data of the color, coordinates,
and normal vector, respectively. Enter the particle data file name and press the Export button to start
particle storage. While the particle data storage process is in progress, the Export button becomes
inactive, as shown in Figure ６-18. Save the particle data after saving all the time series particle data

Ends, and then the Export button returns to the active state.

Figure ６-18 Particle File panel (saving particle data)

 49

６.３.６. Image File Production

The PBVR client saves the image data on the Viewer in two modes and plays it as a movie. Image

file production is activated by hitting the Animation Control Panel button in the Main panel.

l Time series data mode

Saves images of time series data as a series of image data files with the BMP format; the image

data files are converted or compressed as a movie file via free software such as ImageMagic and
ffmpeg

l Key frame animation mode

Keeps geometry information of the Viewer at an arbitrary point as a key frame and plays a series of
key frames as a key frame animation

Figure ６-19 shows the Animation Control Panel. Each widget works as described as follows:

Figure ６-19 Animation Control Panel

 ・capture
controls on/off of image production

 ・image file
specifies a prefix of the image data files with the default name PBVR_image

 ・file

 50

specifies a key frame file containing a series of geometry data with the default

name ./xform.dat
 ・interpolation

specifies the number of frames used for the linear interpolation of the geometry data between
two key frames in a key frame animation; the default value is 10

 ・total key frames
shows the number of key frames stored in the current key frame animation; the value is
initialized to 0 and incremented (or decremented) by pressing “x” (or “d”), and the value is
initialized to 0 by pressing “D”

 ・total animation frames
shows the number of total frames stored in the current key frame animation, which is
calculated as:

(total key frames − 1) × interpolation

 ・Close
close Animation Control Panel

６.３.６.１ Image production

Image files are produced as follows:

① Specify prefix of image files in image file.

② Select “on” in the capture drop down menu.
③ A series of image files are saved at each time step.

④ Image production is stopped by selecting “off” in the capture drop down menu.

The image files are saved in the directory specified by the command line option “-iout.” When “-iout”
option is not specified, they are saved in the current directory “./.” The following shows an example of
the image data produced with the default prefix “PBVR_image:”

PBVR_image.00001.bmp

PBVR_image.00002.bmp
 :
 :

When the image files are produced from a key frame animation, which will be explained later, the file
names are modified by adding “_k” after the prefix.

PBVR_image_k.00001.bmp

PBVR_image_k.00002.bmp

 :
 :

６.３.６.２ Key frame animation of a still image

A key frame animation of a still image obtained by pressing Stop in Time Panel is produced as
follows:

 51

【Capture key frames and save them in a file】

① Specify a key frame file in file.
② Activate Viewer by clicking it.
③ Adjust view and press “x” to store the geometry information of view on a memory.
④ Repeat ③.

⑤ Press “M (Shift+m)” to play the key frame animation.
⑥ If the contents of the key frame animation is OK, press “S (Shift+s)” to save a series of geometry

information in the key frame file.

【Play a key frame file】

① Specify a key frame file in file.
② Activate Viewer by clicking it.

③ Press “F (Shift+f)” to play a key frame animation stored in the key frame file.
④ Press “x” to add new key frames to the current key frame animation.

Table ６-7 Keys used for controlling the key frame animation

Key Function

X Add geometry information of the current viewer to the key frame
data on a memory

D Delete the last key frame

D Delete all key frames

M Play and pause key frame data on a memory

S Save key frame data on a memory to a key frame file

F Load a key frame file and play its key frame data

 52

６.３.６.３ Key frame animation of the time series data

A key frame animation of the time series data is produced as follows:

① By pressing “x” while time series data is rendered, both geometry information and a time step
number are stored in a memory.

② Press “S” to save a series of geometry information and time step numbers in the key frame file.
③ Press “F” to load a series of geometry information and time step numbers in the key frame file

and play a key frame animation. Here, if one sets key frames at unequal intervals, interpolation
frames, which are specified in interpolation, are assigned non-uniform in time.

 Time series data

key frame information

No. time step number

0 00002

1 00004

2 00025

3 00035

Figure ６-20 Key frame animation for the time series data

In an example in Figure ６-20, if one uses 10 interpolation frames between key frames, five
interpolation frames are assigned to time steps 00002 and 00003 in between key frame nos. 0 and 1. In
contrast, in between nos. 1 and 2, 10 interpolation frames are assigned to the time steps from 00004 to

00024. As a result, time steps 00004, 00006, …00024 are shown in the key frame animation.

00002,00003

00025,00026,00027～00034

00035～00044

00004,00006,00008～00024

 53

６.３.６.４ Key frame file format

A key frame file contains binary data with the following format:

type
size

(byte)
data

int 4 time step number

float 4 rotation[0].x

float 4 rotation[0].y

float 4 rotation[0].z

float 4 rotation[1].x

float 4 rotation[1].y

float 4 rotation[1].z

float 4 rotation[2].x

float 4 rotation[2].y

float 4 rotation[2].z

float 4 translation.x

float 4 translation.y

float 4 translation.z

float 4 scaling.x

float 4 scaling.y

float 4 scaling.z

Figure６-21 Key frame file format

File format

Key frame data 1

Key frame data 2

:

 54

７ Samples

This section shows an example of the port-forward connection from Linux/Mac to the many core
cluster JKNL and supercomputer ICEX using Inline, included in the source code package to execute

the in-situ PBVR. Moreover, this section shows an example of accessing a remote server from
Windows and executing the in-situ PBVR.

７.１. ICEX
The following shows the procedure for executing an in-situ PBVR for the unstructured grid in an

interactive job on ICEX. In this example, the RSA public key and the ssh host name / user name are
assumed to have been set. The source package is also assumed to be located at / home / g1 / userid.
First, create a shell program that executes interactive jobs and place it in:

ICEX:/home/g1/UserID/pbvr_inSitu_1.00/Example/Hydrogen_unstruct/run.sh

Launch the first terminal and execute the following command:

［Terminal 1］

Launch the second terminal and execute the following command:

#!/bin/sh

#PBS -q t432

#PBS -l select=1:ncpus=24:mpiprocs=4:ompthreads=6

#PBS -P pbvr_daemon@PG18019

#PBS -l walltime=1:00:00

#PBS -I

$ ssh ICEX

% cd /home/g1/UserID/pbvr_inSitu_1.00/Example/Hydrogen_unstruct

% qsub run.sh

> hostname

r16i0n0

> export VIS_PARAM_DIR=/home/g1/UserID/pbvr_inSitu_1.00/Example/Hydrogen_unstruct

> export

PARTICLE_DIR=/home/g1/UserID/pbvr_inSitu_1.00/Example/Hydrogen_unstruct/jupiter_p

article_out

> export TF_NAME=jupiter

> cd $PBS_O_WORKDIR

> ./pbvr_daemon -p 61000

 55

［Terminal 2］

Launch the third terminal and execute the following command:
［Terminal 3］

Launch the fourth terminal and execute the following command:

［Terminal 4］

$ ssh -L 61000:r16i0n0:61000 UserID@ICEX

⇒ Specify hostname at Terminal 1 launching pbvr_daemon

$ cd /Users/admin/pbvr_inSitu_1.00/Client

$./pbvr_client -p 61000

$ ssh ICEX

% cd /home/g1/UserID/pbvr_inSitu_1.00/Example/Hydrogen_unstruct

% qsub run.sh

> export VIS_PARAM_DIR=/home/g1/UserID/pbvr_inSitu_1.00/Example/Hydrogen_unstruct

> export

PARTICLE_DIR=/home/g1/UserID/pbvr_inSitu_1.00/Example/Hydrogen_unstruct/jupiter_p

article_out

> export TF_NAME=jupiter

> cd $PBS_O_WORKDIR

> cp jupiter_old.tf jupiter.tf

> mpijob ./run

 56

７.２. JKNL

The command when executing the in-Situ PBVR for the hierarchical grid on JKNL is shown. In the
following example, the RSA public key and the ssh host name/user name are assumed to have been
set. The source package is also assumed to be located at / home / g1 / userid. First, create a shell
program that executes interactive jobs and place it in:

JKNL:/home/g1/UserID/pbvr_inSitu_1.00/Example/Hydrogen_AMR/run.sh

Launch the first terminal and execute the following command:
［Terminal 1］

Launch the second terminal and execute the following command:

［Terminal 2］

#!/bin/sh

#PBS -q mc64

#PBS -l select=1:ncpus=24:mpiprocs=4:ompthreads=6

#PBS -P pbvr_run@PG18019

#PBS -l walltime=01:00:00

#PBS -I

$ ssh ユーザ ID@jknlfs.tokai-sc.jaea.go.jp

$ cd /home/g1/UserID/pbvr_inSitu_1.00/Example/Hydrogen_AMR

$ qsub run.sh

$ hostname

jknl3

$ export VIS_PARAM_DIR=/home/g1/UserID/pbvr_inSitu_1.00/Example/Hydrogen_AMR

$ export

PARTICLE_DIR=/home/g1/UserID/pbvr_inSitu_1.00/Example/Hydrogen_AMR/jupiter_partic

le_out

$ export TF_NAME=jupiter

$ cd $PBS_O_WORKDIR

$./pbvr_daemon -p 61000

$ ssh -L 61000: jknl3:61000 UserID@jknlfs.tokai-sc.jaea.go.jp
⇒ Specify hostname at Terminal 1 launching pbvr_daemon

 57

Launch the third terminal and execute the following command:

［Terminal 3］

Launch the fourth terminal and execute the following command:

［Terminal 4］

$ cd /Users/admin/pbvr_inSitu_1.00/Client

$./pbvr_client -p 61000

$ ssh ユーザ ID@jknlfs.tokai-sc.jaea.go.jp

$ cd /home/g1/UserID/pbvr_inSitu_1.00/Example/Hydrogen_AMR

$ qsub run.sh

$ export VIS_PARAM_DIR=/home/g1/UserID/pbvr_inSitu_1.00/Example/Hydrogen_AMR

$ export

PARTICLE_DIR=/home/g1/UserID/pbvr_inSitu_1.00/Example/Hydrogen_AMR/jupiter_partic

le_out

$ export TF_NAME=jupiter

$ cd $PBS_O_WORKDIR

$ cp jupiter_old.tf jupiter.tf

$ mpiexec ./run

 58

７.３. Windows
The procedure for remotely connecting from a Windows client to a remote server is shown below.

The following procedure assumes transfer from port 60000 of the client to port 60000 of the server.
Set up port forwarding with the help of an SSH client software (e.g., TeraTerm or Putty) to connect the
PBVR client in a Windows machine to the PBVR server in a remote machine. The following is an

example for TeraTerm:

1) Launch TeraTerm and hit cancel in the “New connection” dialog.

Figure ７-1 Tera Term dialog 1)

2) Select Setup > SSH Transfer from the menu bar. Click Add… in the Forwarding
Setup dialog.

Figure７-2 Tera Term dialog 2)

 59

3) In the Select Direction for Forwarded Port dialog, select Forward Local Port and
enter the port number to be used for the PBVR client. In the to remote machine text
field, enter the domain name or the IP address of the server. Then, in the port field,
enter the port number to be used on the PBVR server. Finally, click on OK to complete
the port forwarding setup.

Figure７-3 Tera Term dialog 3)

4) Connect to the server. Select File > New Connection from the menu bar. In the New
Connection panel, enter the host name of the server and click on OK. In the SSH
Authentication panel, enter the user name and passphrase or specify the location of
the private key file, and then click on OK.

 60

Figure７-4 Tera Term dialog 4)

The procedures that follow show how to launch the PBVR server and client after establishing port
forwarding. This example uses the Visual Studio 2013 x64 Cross Tools command prompt in Visual
Studio 2013 as the terminal for launching the PBVR client.

Step1 [Launch PBVR server]

Server> mpiexec –n 4 pbvr_server –p port_number
Step2 [Set a client parameter for Windows]

Windows> set TIMER_EVENT_INTERVAL=1000
Step3 [Launch PBVR client]

Windows> pbvr_client.exe –vin filename –p port_number

Note that the PBVR client on a Windows machine can be launched by executing a batch file using
the following lines:

set TIMER_EVENT_INTERVAL=1000

pbvr_client.exe –vin filename –p port_number

