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安定構造探索

統計サンプリング(自由エネルギー・エントロピー)

振動モード・反応座標

LiTi2O4 samples range from 3.5 to 4.0 in point-contact
spectroscopy33,34 and Andreev reflection36. A recent report using
epitaxial LiTi2O4 thin films claims 2D/kBTc¼ 4.07 from point-
contact spectroscopy22, and thus the obtained value of 3.0 is much
smaller than that of all the previous reports. Furthermore, the
present value is even smaller than that for the weak coupling limit
for s-wave BCS superconductivity of 3.52. We discuss later the
possible origins of this unexpectedly small 2D/kBTc.

Coherence length on the surface. To further study the super-
conductivity on the surface, we investigated the value of x from
the electronic structures around a magnetic vortex core. We first
analysed the Vs dependent conductance (dI/dV) map around a

single vortex core by applying an external magnetic field of 1.5 T
perpendicular to the surface at 4.2 K (Fig. 4a–e). At Vs¼ " 8 mV
and þ 8 mV, we observed uniform conductance over the scanned
region (Fig. 4a,e), whereas conductance values were depressed
around the centre of images at Vs¼ " 4 mV and þ 4 mV
(Fig. 4b,d). This depressed conductance is a consequence of
suppressed coherence peaks. In contrast, the conductance map at
Vs¼ 0 mV clearly represents enhanced conductance in the centre
region (Fig. 4c). This enhanced zero-bias conductance around the
centre region is because of pair breaking. These energy evolutions
of conductance map indicate signatures of a vortex core (Fig. 4a–e),
and the evolution of tunnelling spectra along line A–B in Fig. 4a
clearly shows a typical spatial evolution of spectral shape across a
vortex core (Fig. 4f).
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Figure 1 | Surface topographies and superconducting critical temperatures. (a,b) STM topographic images of as-deposited thin film at substrate
temperature of 600 !C (a) and 400 !C (b). (c,d) STM images after post-deposition annealing (PDA) for films deposited at 400 !C (c) and 300 !C (d).
Note that b,c are taken with using the same film. a–c are obtained at 77 K and d is obtained at 4.2 K (all the STM images were observed at a sample-bias
voltage of þ 300 mV and a tunnelling current is about 10 pA). Scale bar, 80 nm (a–d). (e) Growth temperature dependence of root mean square of surface
roughness (RRMS) values: as-grown samples (blue symbols) and after PDA (red symbols). The value of RRMS is evaluated from topographic images
observed at a sample-bias voltage of þ 300 mV and a tunnelling current of 10 pA (scan area of 400 nm). (f) Temperature dependence of the field-cooled
dc magnetic susceptibility for the LiTi2O4 films in a magnetic field of 50 Oe, which was applied parallel to the (111) plane. Clear diamagnetism is observed.
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Figure 2 | Typical topographic images on a terrace. (a) Filled-state STM image of LiTi2O4(111) surface (11.6 nm$ 11.6 nm, sample-bias voltage Vs of
" 900 mV, tunnelling current Iset of 30 pA). (b) Empty-state STM image (4 nm$4 nm, Vs¼ þ 30 mV, Iset¼ 30 pA). (c) Zoomed-up image
(1.7 nm$ 1.7 nm, Vs¼ þ 30 mV, Iset¼ 30 pA) of b. The image shows three-fold symmetry representing the spinel crystal structure. Scale bars, 2 nm (a),
0.8 nm (b) and 0.3 nm (c).
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LTO表面構造の同定 
(Nat. Commun. 8, 15975 (2017))

障壁計算 NEB
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vinyl alcohol to acetaldehyde (NEB method)

DMol3   TS search (LST/QST)  51.473 cal/mol, -10.851 cal/mol (PBE)

52.14 kcal/mol

Phys. Chem. Chem. Phys., 2018, 20, 11586-11591

• 静的な安定状態から動的な挙動まで

• 構造と特性・観測データを結びつけるキー

• ナノスケール物理では必須のツール

原子・分子シミュレーション

原子間相互作用（ポテンシャル）
の存在が大前提

https://doi.org/10.1039/1463-9084/1999


Lennard-Jones Potential

Stllinger-Weber Potential F. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262 (1985).

ULJ(r) = �4✏
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On the Determination o f Molecular Fields.—II . From the
Equation o f State o f a Gas.

By J. E. J o n e s , D .S c ., 1851 Exhibition Senior Research Student, 
Trinity College, Cambridge.

(Communicated by Prof. S. Chapman, F.R.S.—Received April 22, 1924.)
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1. Introduction.

The investigation of a preceding paper* has shown that the temperature 
variation of viscosity, as determined experimentally, can be satisfactorily 
explained in many gases on the assumption that the repulsive and attractive 
parts of the molecular field are each according to an inverse power of the 
distance. In some cases, in argon, for example, it was further shown that the 
experimental facts can be explained by more than one molecular model, from 
which we inferred that viscosity results alone are insufficient to determine pre 
cisely the nature of molecular fields. The object of the present paper is to 
ascertain whether a molecular model of the same type will also explain avail 
able experimental data concerning the equation of state of a gas, and if so, 
whether the results so obtained, when taken in conjunction with those obtained 
from viscosity, will definitely fix the molecular field.

Such an investigation is made possible by the elaborate analysis by Kamer- 
lingh Onnesf of the observational material. He has expressed the results 
in the form of an empirical equation of state of the type

A + 5 + C + D  K F
» »8’

where the coefficients A ... F, called by him virial coefficients, are determined 
as functions of the temperature to fit the observations. Now it is possible 
by various methods to obtain a theoretical expression for B as a function

* ‘ Roy. Soc. Proc.’ above.
t  Kamerlingh Onnes, ‘ Communications Phys. Lab. of Leiden,’ No. 71, or ‘ Proc. Sect, 

of Sciences, Amsterdam,’ vol. 4, p. 125 (1902).
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• 気体粘性の温度依存性を「斥力」「引力」相互作用で説明する事が目的

• 気体の状態方程式の２次のビリアル展開を解析的に議論

• まだ分子の内部構造は十分分かっていない時代のこと 本質をつき且つ解析的に扱える点がすごい

On the Determination of Molecular Fields. 465

§ 2. The Second Virial Coefficient.

Theoretical calculations of the equation of state of a gas of moderately large 
lution result in a formula of the type*

Vv =  k m  (1 +  ? ) ,

here, as usual, jp, v and T denote pressure, volume and temperature respec- 
vely, k the Boltzmann gas constant, N the total number of molecules in the 
is, and B the second virial coefficient. The latter is a function of temperature 
lly, its form depending only on the nature of the molecule. This equation 
state is, like that of van der Waals, true only as a first approximation. It 
■>es not apply, for instance, at high pressures.
For molecules of spherical symmetry, which can be represented by a potential 
eld 7z(r) ,  the formula for B is usually given as*

*00
B =  2ttN I r2 (1 -  e2j*<r)) dr, (2.02)

Jo
here 2 j  — 1 /kT. An alternative form for B isf

B =  ^ |  r3
3kTJ0

(2.03)

here /  (r) is the force between two molecules when separated by a distance 
and is obviously related to — (r) by the equation •

/• QO
n(r) =  — I (2.04)

J r

The identity of the two formulae for B is easily established on integrating 
piation (2.03) by parts. The proof requires that

Lt r3 (e*j”{r)—1) =  0, (2.041)
r 00

hich is easily seen to be a condition that B shall remain finite. This places 
restriction on the molecular models which are possible. For instance, if

(2.05)

lie condition requires that neither n nor m shall have a value less than 4.
The difficulty of expressing B as an explicit function of the temperature is

0(ly of this paper. The later values have been treated independently by the methods 
f this paper, leading to results more in line with those already obtained from viscosity 
leasurements (see Appendix).
* Keesom, Core, J. E. Jones, loc. cit.
t Jeans, ‘ Dynamical Theory of Gases,’ 3rd edn., p. 132, eqns. (331) and (335).
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• Siなど共有結合性結晶でのstandard.

• ３体項を加えて角度成分を表現

• カットオフ半径の導入

• シンプルな記述

数値計算に向いた設計がされている
!4

二体バネモデルなど

原子間ポテンシャル



Stllinger-Weber Potential
F. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262 (1985).

• 低温低圧でdiamond構造を取るように調整

• 融点や高温での液体構造を再現するように
調整

満たすべき条件（物性・特性）

ポテンシャル構成の流れ
ポテンシャルの物理モデルを理論的に作成

パラメータ空間の探索

満たすべき条件１を満たすパラメータを収集

別の条件も満たすベストなパラメータセットを選択

分子動力学の実行

物性・構造を計算 モデル選択と多目的最適化を
専門家が独自に行なっている
ようなもので、パラメータ発
見も非常に高難度（逆問題）

LJ potential 
SW potential 

Gay-Berne model 
etc.

!5

ポテンシャルのパラメータ決定



第一原理計算 A first principle is a basic, foundational, self-evident proposition or assumption
that cannot be deduced from any other proposition or assumption. (@Wikipedia)

• 基礎方程式と基礎物理量に基づき実験事実に合わせ込んだ経験的パラメータを用いない手法

• 実験結果を仮定せず扱いたい系を支配する物理モデルのうち最も基本的なもののみで物理量を計算する手法

• 密度汎関数法（DFT）がもっとも主流（many-body Schrödinger eq.を有効一体問題にマップして解く）

• 固体振動のバネモデルはバネ定数を実験値から決めなければいけないので第一原理的ではない

• DFTからバネ定数を求めて振動モードを計算する方法は第一原理計算

• ハートリー・フォック法, QCDなども第一原理計算

経験的ポテンシャルモデル

第一原理計算

観測量

個別の実験事実を考慮
しなくても計算可能

計算コストが高いので検討範囲が必然的に狭まる

計算コストが低いので種々の検討が可能

観測量に合うよう設計 
試行錯誤が必要

第一原理計算を再現するよう設計 
Vmodel ~ VFP というフィッティングをすれば良い

パラメータが決まれば
計算可能

!6

ポテンシャル設計の流れ

High-throughput

逆問題からフィッティングへ

https://en.wikipedia.org/wiki/Proposition


TTAM (Tsuneyuki-Tsukada-Aoki-Matsuda) Potential

Phys. Rev. Lett. 61, 86 (1988).
Nature 339, 209 (1989).

Hartree-Fock法でSiO44- + 4 point chargeモデルを元に、ポテンシャルを作成

!7
高圧下でのSiO2新構造を発見！

VOLUME 61, NUMBER 7 PHYSICAL REVIEW LETTERS 15 AUGUST 1988

a =0.118, 0.424) ' for silicon and (9s5p)/[3s2p] with p
functions (with a =0.059) ' for negative-ion states of
oxygen. We assume no electron orbitals around the
point charges.
The potential energy surface is then obtained by our

changing the Si-0 distances or 0-Si-0 angles with three

t

difl'erent modes. One potential energy surface is depict-

U/(r) =U;/c'""~ b(r)+f o(b;+b J)exp[( a+a J r)/(—b;+bi

ed in Fig. 1, in which we stretch all the Si-0 bonds keep-
ing the Td symmetry of the cluster. We have also ob-
tained the results for the C3„,mode, in which only one
Si-0 distance is changed, and the D2d mode, in which
0-Si-0 angles are varied with constant Si-0 distance.
It has turned out that these three potential energy sur-

faces can be fitted well by a sum of pairwise interatomic
potentials. We have employed the function form,

)]—c;cj/r', (1)
which consists of Coulomb interaction with some corrections discussed below, Born-Mayer-type repulsion, and disper-
sive interaction. Here r is the distance between atoms and a; (b;) is the effective radius (softness parameter) of the ith
atom with the standard force fo 1 kcal A mol . We also include Coulomb interactions with the point charges.
A caution must be made in the evaluation of the Coulomb interaction in the cluster, because the effective charge in

the bulk, Q;, is different from that in a Si04 cluster, Q;: In terms of the fractional charge, An, transferred from a Si
atom to an 0 atom per Si—0 bond, we have Qp= —2/)ne and Qs;=4/)ne, while we have Qo= —(I+An)e and
Qs; =4/)ne We. express the Coulomb interaction in the cluster as a sum of long-range and short-range parts as

Uij~'"" '=Q;Q, [1—g~)(r)]/r+Q;Q)gii(r)/r,

gso(r) =(I+fr)exp( 2/r), —goo(r) =[1+11((r)/8+3((r) /4+((r) /6]exp( —2(r).
(2)
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The correction, g&(r), in the long-range part (the first
term) involving Q reflects the distribution of the excess
charge of oxygen, for which we assume a hydrogenlike
orbital with a radius I/( here. The radius is of the order
of the ionic radius of 0, so that we employ I/(=1.4 A
following Pauling. ' Since the remaining short-range
part is expected to be insensitive to the environment, we
use the bulk Q; there. Once the parameters a;, b;, and c;
are optimized from the cluster calculation, we switch Q
back into Q (i.e., UPi"" =Q;Qi/r) in the bulk simula-
tion. Thus the final pair potentials have the same func-
tional form as suggested by Gilbert and Ida. '
From the cluster calculation, the charge obtained by

the Mulliken analysis, which is Qp- —1.7e (i.e.,

I
hn 0 7)-for. the equilibrium bond length, is shown to be
a function of the Si-0 distance (Fig. 1). The feature
that the atomic charge varies with the bond length clear-
ly indicates a many-body character of interatomic forces
in the covalent system. The physical mechanism will be
discussed in more detail elsewhere. To concentrate on
the pair-potential approach, however, we have used con-
stant Q; (Q;). Since small-cluster results are insufficient
to determine the long-range Coulomb interaction, and
because the absolute value of the Mulliken charge itself
depends on the choice of basis function, we have not in-
cluded An in the fitting procedure. Instead we tried
several fixed values of An around the Mulliken charge.
Among the trial values studied here, the fitted parame-
ters with An 0.6 reproduce the best crystal parameters.
Since the fitting procedure for a;, b;, and c; is nonlinear,
more than one set of parameters are obtained. We have
chosen the one (Table I) which optimizes the structure
and compressibility of a-quartz' in a static simulation
by the program wMtN. '

Now we turn to the MD study. We have performed
the dynamical stability test for four polymorphs of silica
mentioned above. !t has been experimentally shown that
these polymorphs, which correspond to different pres-
sure-temperature regimes, can also exist at normal pres-
sure and temperature as metastable states. In the
present simulation, the number of atoms in the system is
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TABLE I. Potential parameters determined in this study.

FIG. 1. Total energy and the Mulliken charge on an oxygen
atom for Td deformation of a Si04 -4e+ cluster shown in the
inset. The solid circles are the cluster calculation, full curve is
the fitted potential, and the broken curve is a guide to the eye.
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• Si-O間の電荷移動量をモデル化 
• 静電相互作用をlong-range, short-rangeに分離 
• クラスターモデルから固体系へ移植 
• SiO2の様々なpolymorphの安定構造を再現 
• 6配位, ４配位の差に軌道を仮定しなくてもよかった

フィッティングによるポテンシャル作成
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J. Chem. Phys. 103 (10), 8 (1995) .

Classical modelの入力を低次元化する目的

DFTの結果をモデル化することも試みられている

• Si(100)上のH2発生のクラスター
モデル計算


• 750 sample, 12-7-1という構成

• 誤差2.1 kcal/mol.とやや大きい

fitting methods are available for comparison. In preliminary
attempts to fit the combined training and test sets with
MARS, we were able to establish several two degree-of-
freedom approximations to the potential. Attempts using
MARS to fit models with more degrees-of-freedom were un-
successful.

VI. DISCUSSION

We have shown that neural networks can be trained from
a modest amount of data to accurately represent realistic po-
tentials at arbitrary coordinates. The errors introduced by the
network representation are small compared to the errors ex-
pected for energies from experiment or electronic structure

calculations. In the examples developed here, training time is
negligible and the network is efficient to evaluate. While
programming the training algorithm is nontrivial, it is a
simple exercise to calculate the output of a trained neural
network for any value of the inputs. Neural networks are
typically less sensitive to noise and outliers in the training
data compared to simple splines, so we expect that errors in
training data will not substantially diminish the utility of the
network in modeling potential functions.

Our primary goal is to use energies from electronic
structure calculations as training data for networks. Current
technology makes it possible to calculate energies for a few
thousand training examples in a reasonable time. During ge-
ometry optimization or transition state searches, energies are
calculated at many intermediate geometries. Typically, only
the information about the final geometry is retained. Since
network training data need not be evenly spaced, all the ne-
glected information from geometry searches can be used to
train or test neural network models at no additional cost.
Most of these points will fall near the minima and transition
states, and it is reasonable to assume that these regions will
be the most accurately represented. This situation is appro-
priate for chemical kinetics and dynamics calculations,
where results are most sensitive to the minima and transition
states.

Many questions remain. The most obvious is how the
complexity of neural network models depends on the number
of degrees of freedom. The number of hidden nodes needed
to achieve a given level of accuracy depends on the nonlin-
earities of the function being modeled. This makes it difficult
to conceive a useful systematic study, but we can offer some
comments based on the examples studied here. Neural net-
works may not be subject to the ‘‘curse of dimensionality’’
that plagues conventional splines and other nonparametric
methods.18 The most time consuming part of the calculations
needed to make a prediction with a trained neural network is
evaluating the sigmoid transfer functions in the hidden layer.
While it is premature to draw general conclusions, our ex-
amples demonstrate that the number of hidden nodes does
not need to increase dramatically to model functions of more
dimensions. Model flexibility increases, even without adding
more hidden nodes, because the number of weights grows
linearly with the number of inputs. This increases the length
of the vectors multiplied in Eq. ~2!, but adds little to the cost
of evaluation. We have also found that there is some flexibil-
ity to choose between network complexity and prediction
error. In the CO/Ni~111! examples, when going from two to
three dimensions, the number of hidden nodes in the most
accurate models changed from six to 15, and the number of
parameters tripled ~from 25 weights to 76!. If slightly higher
levels of error can be tolerated, three-dimensional models
with seven hidden nodes ~36 weights! or nine hidden nodes
~46 weights! can be used.

A more pressing concern is that the amount of training
data required to achieve given accuracy appears to grow ex-
ponentially with the number of dimensions in the CO/
Ni~111! models. Again, the nonlinear features of the function
being modeled will determine the amount of training data
needed, so these two examples may not reflect the general

FIG. 5. Prediction error distribution for a twelve degree-of-freedom model
of H2/Si~100!. The network has a 12-8-1sl structure, trained from 750 ex-
amples. Results are shown for a test set of 617 points. The MAD over the
test set is 2.2 kcal/mole. ~a! Scatter plot of the prediction error against the
true energy. ~b! Histogram of prediction errors.
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oms bound to the second layer Si atoms. These H atoms
mimic the anticorrelated buckling of adjacent dimers: e.g.,
those on the ‘‘down’’ side of the dimer move upward. The
transition state geometry found with the B-LYP functional is
nearly the same as the LSD geometry. The only significant
change among the geometric parameters given in Fig. 1 is
that the B-LYP surface dimer bond is longer by 0.10 Å.

Our calculated transition state is qualitatively consistent
with observed product energy distributions. The transition
state structure is similar to that proposed by Kolasinski et al.
to explain their observations of vibrationally excited and ro-
tationally cool hydrogen molecules.3 In the unstable normal
mode at the transition state, the H–H bond shortens and the
H2 center-of-mass moves both parallel to and away from the
surface. The H–H axis remains parallel to the surface and the
surface dimer buckles slightly away from the molecule. The
constant orientation of H2 along the unstable mode is consis-
tent with a cool rotational energy distribution and large
changes in H–H bond length suggest that the product will be
vibrationally excited.

The B-LYP transition state is 23 kcal/mol higher in en-
ergy than the desorption products. Since most H2 molecules
desorb without significant vibrational, rotational, or transla-
tional excitation, the excess energy at the transition state
must be deposited in surface modes. Some insight can be
obtained from classical estimates of the energy in vibrational
modes at the transition state and the assumption that the
surface and hydrogen molecule exchange no energy after
reaching the transition state. B-LYP calculations predict that
a hydrogen molecule stretched as in our transition state will
be 15 kcal/mol above the potential minimum. The first ex-
cited vibrational state is 18 kcal/mol above the minimum,
suggesting that H2 can only desorb in this state if it is ther-
mally excited. This may rationalize the small fraction of mol-
ecules that desorb with vibrational excitation. For the vast
majority of molecules which desorb in the vibrational ground

state, it is not clear how the excess energy at the transition
state energy is transferred to the surface. Brenig et al.34 have
developed a model in which surface vibrations are excited
because the surface geometry is very different in the transi-
tion state and final state. We find that if the surface is held at
the transition state geometry while H2 is removed, the result-
ing structure is only 3–5 kcal/mol higher in energy than the
optimal clean surface. This may be affected by the cluster
model, but it seems unlikely that surface distortion alone can
account for a high degree of surface excitation. If our de-
scription of the transition state is accurate, more subtle cou-
pling must occur between the surface and desorbing mol-
ecule. This may include surface electronic excitation, since
there are low-lying electronic states on the clean surface.35

By detailed balance, adsorption and desorption occur
through the same transition state at equilibrium. Since ad-
sorption requires a stretched H–H bond, exciting vibrations
in H2 should be an effective means of overcoming this bar-
rier. The first excited vibrational state has a large fraction of
the energy needed to cross the barrier. Surface distortion ac-
counts for a small fraction of Ea

ads , so our model implies that
excitation of surface phonons should make a small contribu-
tion to adsorption.

Previous calculations by Wu et al., Nachtigall et al., and
Jing and Whitten have found much higher values for Ea

des

with the prepairing mechanism. Our values differ from theirs
due to different approximations used in geometry optimiza-
tion and in the electronic structure calculations. The calcula-
tion by Nachtigall et al.10 is most easily compared to ours.
Constraints that they imposed on the geometry of subsurface
atoms prevent the anticorrelated buckling effect described
above. We have used their basis set ~6-3111G**! and func-
tional ~Becke3LYP! with the GUASSIAN92/DFT program36 to
calculate the energy at geometries that we have optimized
with no constraints. The resulting values for Ea

des are 75 and
74 kcal/mol ~without ZPE! at the LSD and B-LYP geom-
etries, respectively, compared to 77 kcal/mol found by
Nachtigall et al. The difference reflects the geometric con-
straints. Increasing the basis to 6-31111G~2d f ,2p! reduces
the Becke3LYP prediction to 72.3 kcal/mol at the LSD ge-
ometry. We have also done B-LYP calculations with this last
basis at the same geometry, and find that Ea

des is 67.4 kcal/
mol, only 0.5 kcal/mol below the value in Table I. Compari-
son of the B-LYP and Becke3LYP calculations with this
large basis suggests that differences between the two func-
tionals account for about 5 kcal/mol of the difference in pre-
dicted Ea

des . This raises the question of which functional is
more accurate. Nachtigall et al. have made systematic com-
parisons of several DFT methods for gas phase silane
chemistry.37 Unfortunately, there is no obvious molecular
analog of the electronic structure in this surface reaction
which could provide an experimental test.

Since the initial submission of this work, we have
learned of DFT slab calculations38–40 which find values for
Ea
des of 55–60 kcal/mol ~without ZPE!. This raises the ques-
tion of whether cluster methods inherently overestimate
Ea
des . The slab calculations use Becke–Perdew23,41 ~BP! or
generalized gradient approximation42 functionals. We have
used the GAUSSIAN94 program43 to calculate single-point en-

FIG. 1. Configurations along the unstable normal mode at the transition
state. Selected bond lengths for the LSD-optimized transition state @shown
in 1~b!# include: r~Si1–Si2!52.37 Å; r~Si1–H1!51.70 Å; r~Si1–H2!51.67 Å;
r~Si2–H2!52.18 Å; r~H1–H2!51.00 Å. Corresponding values for the
B-LYP-optimized geometry are: r~Si1–Si2!52.47 Å; r~Si1–H1!51.69 Å;
r~Si1–H2!51.68 Å; r~Si2–H2!52.18 Å; r~H1–H2!50.99 Å.

TABLE I. Energies ~kcal/mol! at LSD-optimized geometries.

Epair Ea
des Ea

ads Erxn

LSD 11.8 58.1 6.0 52.2
B-LYP 9.5 67.9 22.7 45.2
DZPE 0.3 23.0 0.1 23.0
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• CO/Ni(111)のCO吸着に関する研究

• COの３次元配置で与えられるポテンシャルを３つの特徴量でモデル化

• 7 x 7 x 11 samples, 3-15-1という構成

• Extend Kalman filterを使って最適化

• 低次元NNで、path-integralを計算し、量子効果を見積もっている

required only one more hidden node than the network used
in the two-dimensional case, though the prediction error is
not as low. Nevertheless, it is remarkable that such a small
change to the net topology can achieve reasonable accuracy
on a substantially more complicated problem.

The predictions of potential from a cubic spline fit to
data on the 73737 grid is an order of magnitude more ac-
curate than the 3-7-1sl network. Increasing the density of
training data in the z direction allows the inclusion of more
hidden nodes in the network without overtraining, however.
Using training data on a 737313 grid and fifteen hidden
nodes, the neural net is comparable to the spline in accuracy,
with a MAD below 0.02 kcal/mole and a maximum error of
only 0.14 kcal/mole. This absolute error is as small as that
achieved in the two-dimensional case, but as a fraction of the
energy range, the error in fitting the three-dimensional model
is smaller by half ~0.15%!. Figure 2 shows the prediction
errors for this network. The largest errors occur at energies
close to the minimum, where the curvature with respect to
the z coordinate is greatest.

These training sets include an order of magnitude more
examples than in the two-degree-of-freedom case. However,
the x , z , u network can be trained in only 80 epochs, which
is 50–70% of the number of epochs needed to train the x , u
network. This demonstrates one of the strengths of the neural
network: Each of the network weights depends on many data
points, and training can be effected either by presenting more
data, or by multiple presentations of the same data. The train-
ing data contain redundant information, and the neural net is
an efficient method for reducing a large number of data
points to a smaller set of weights. In this sense, the neural net
has more in common with fits to assumed functional forms
~which use a small number of parameters to determine a
global potential! than with a spline ~which forces a local fit,
using as many parameters as there are data points!. This
redundancy also can help to make the network less sensitive
to noise in the input training data than a spline.

The time required to train one of the larger networks is
less than 90 min, or an average of one minute per epoch, in
MATLAB on a Sun Sparcstation 2/Weitek mP. In applica-
tions where the potential will be evaluated many times, the
training time is negligible compared to the time spent evalu-
ating the function. Under such circumstances, much longer
training times could be tolerated.

IV. PATH INTEGRAL TRANSITION STATE THEORY
WITH NEURAL NETWORK POTENTIALS

To illustrate the effectiveness of the neural net represen-
tation of potentials in realistic calculations, we have used the
two-degree-of-freedom model in quantum transition state
theory ~TST! calculations of surface diffusion rates.14,15 The
problem discussed here is motivated by classical simulations
of diffusion of CO on Ni~111! using the full many-
dimensional empirical potential.8,9 These simulations show
significant coupling between the lateral translation and the
bending motion of the molecule. The adsorbate bending fre-
quency is large compared to typical thermal energies, sug-
gesting that quantum effects may play a role.10 Here we ex-
amine the effects of changing the adsorbate moment of

inertia on quantum TST. This extends previous work that
used the constrained many-dimensional potential to compare
the classical and quantum TST rates for a single moment of
inertia.10 The neural net representation of the potential is
much faster to evaluate than the original empirical potential,
making more extensive calculations feasible.

The classical TST rate ~with a fixed dividing surface! is
independent of the moment of inertia, I . However, changing
I changes the frequency of the bending motion. Thus, I may
affect the true rate due to dynamical effects or quantum ef-

FIG. 2. Prediction error distribution for a three-dimensional model of CO/
Ni~111!. The potential minimum is at 231 kcal/mole. The network has a
3-15-1sl structure, trained from a 737313 training set. Results are shown
for a test set of 2000 points. The MAD over the test set is 0.022 kcal/mole.
~a! Scatter plot of the prediction error against the true energy. ~b! Histogram
of prediction errors.
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（おそらく）初めてのNNによるフィッティング論文

ただし、そもそものシミュレーション手法がそこまで進んでいない。。

ニューラルネットポテンシャル
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[1] J. Behler, S. Lorenz, and K. Reuter, J. Chem. Phys. 127, 014705(2007)

Symmetry-Adapted Functionの設計

３次元配置を入力にしたNNの問題

fcc(111)の表面形状に合わせてフーリエ変換を元に構成する方法を提案[1]

ただし問題に合わせて複雑な関数を設計することは決して容易ではなく
もっと簡便な表現が必要に。

• 入力層が原子数に依存するため、異なる系には適用できない（汎用性）

• 同種粒子の入れ替えに対する対称性が破れてしまう

• 同様にポテンシャルが満たすべき対称性が保証されない

入力表現・汎用性・対称性がキーワード

NNフィッティングの諸問題
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1. 入力として新しいSymmetry Function（対称性関数）を導入

G1
i =

allX

j 6=i

e�⌘(Rij�Rs)
2

fc(Rij), (2)

G2
i = 21�⇣

allX

j,k 6=i

(1 + � cos ✓ijk)
⇣ e�⌘(R2

ij+R2
ik+R2

jk)fc(Rij)fc(Rik)fc(Rjk), (3)

• 各原子周辺環境を２体・3体の指標（Symmetry function）で数値化

• これらの指標は系の回転・並進で普遍

2. 全エネルギーを原子ごとの寄与に分割、原子種ごとに同じNNを構成する
input and the output layer are one or more ‘‘hidden layers,’’
each with a certain number of nodes. All nodes in each
layer are connected to the nodes in the adjacent layers by
real-valued weight parameters, which initially are chosen
randomly. For a given set of coordinates the output of the
NN is then given by the expression

 E i ! f2
a

!
w2

01 "
X3

j!1

w2
j1f

1
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w1

0j "
X2

!!1

w1
!jG
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i
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Here, wkij is the weight parameter connecting node j in
layer k with node i in layer k# 1, and wk0j is a bias weight
that is used as an adjustable offset for the activation func-
tions fka. Activation functions are typically nonlinear func-
tions that introduce the capability to fit nonlinear functions
into the NN [5 ,6]. In the present work the hyperbolic
tangent has been used as an activation function in the
hidden layers, and a linear function for the output layer.
Since the weight parameters initially are chosen randomly,
the output of the NN does not correspond to the correct
total energy, but since the latter is known for a set of points
from DFT calculations, an error function can be con-
structed and minimized to optimize the weight parameters
in an iterative way. The optimized set of weights obtained
can then be used to calculate the potential energy for a new
set of coordinates.

This NN structure has several disadvantages that hinder
its application to high-dimensional PESs. Since all weights
are generally different, the order in which the coordinates
of a configuration are fed into the NN is not arbitrary, and
interchanging the coordinates of two atoms will change the
total energy even if the two atoms are of the same type.
Another limitation related to the fixed structure of the
network is the fact that a NN optimized for a certain
number of degrees of freedom, i.e., number of atoms,
cannot be used to predict energies for a different system
size, since the optimized weights are valid only for a fixed
number of input nodes. Thus, in order to represent PESs
useful for all system sizes, a new NN topology has to be
introduced.

The main idea is to represent the total energy E of the
system as a sum of atomic contributions E i, an approach
that is typically also used in empirical potentials

 E !
X
i
E i: (2)

The general structure of this new network topology is
shown schematically in Fig. 2 for a system consisting of
three atoms and all associated degrees of freedom. The
fR"i g represent the Cartesian coordinates " of atom i. In a
first step these coordinates are transformed into a set of
symmetry function values fG!

i g for each atom i. These
symmetry function values describe the energetically rele-
vant local environment of each atom and are subsequently
used as input for the NN. They depend on the positions of
all atoms in the system, as indicated by the dotted arrows.

For each atom in the system there is now a ‘‘standard’’ NN
(cf. Fig. 1), which we call subnet Si and which after the
weight optimization yields the energy contribution E i to
the total energy E . Summing these energy contributions
then finally yields the total energy of the system. To ensure
the invariance of the total energy with respect to the
interchanging of two atoms the structure of all subnets
and the values of the weight parameters are constrained
to be identical in each Si.

The crucial point is the introduction of a new type of
symmetry function. While other types of symmetry func-
tions have been used before [5 ], in our approach the
symmetry function values of each atom reflect the local
environment that determines its energy; i.e., two structures
with different energies must yield different sets of symme-
try function values, while identical local environments
must give rise to the same set. Furthermore, the symmetry
function values must be invariant with respect to a rotation
or translation of the system. Finally, the number of sym-
metry functions must be independent of the coordination of
the atom, because the coordination number of an atom can
change in a MD simulation, while the structure of the
subnets must not be changed if the NN is to remain
applicable generally.

Symmetry functions can be constructed from atomic
positions in a way similar to empirical potentials. But
while in the latter case these terms are used to construct
directly the total energy of the system, in the case of the
NN they are used only to describe the structure. The
assignment of the energies to the structures is done in a
second step by the NN.

In order to define the energetically relevant local envi-
ronment we employ a cutoff function fc of the interatomic
distance Rij, which has the form

 fc$Rij% !
8<
:

0:5 &
h
cos

%
#Rij
Rc

&
" 1

i
for Rij ' Rc;

0 for Rij > Rc:
(3)

 

FIG. 2. Structure of the neural network as applied in this Letter
to a system containing three atoms. The Cartesian coordinates of
atom i are given by R"i . These are transformed to a set of !
symmetry function values G!

i describing the local geometric
environment of atom i, which depends on the positions of all
atoms in the system as indicated by the dotted arrows. The
symmetry function values of atom i then enter the subnet Si
yielding the energy contribution E i of atom i to the total energy
of the system E . The structure of the subnets corresponds to the
neural network shown in Fig. 1.

PRL 98, 146401 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
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• 同種原子の入れ替え対称性を担保

• 原子数が増えてもシステムサイズで入
力層が変らず学習済みNNのサブネッ
トを増やすだけで良いため

Behler-Parrinelloの方法
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1

4

2

3

原子配置

DFT計算

全エネルギーE

Symmetry function vector Gk={Gk1,Gk2,…}
で原子の周辺環境を記述

G1

G2

G3

G4

NN1

NN1

NN1

NN2

E1

E2

E3

E4

E

• 正味のINPUTは、サブネットの入力 x 原子数 

• 学習すべきNNのパラメータは、原子種ごとに共通。

• また入力ベクトルGの次元は固定できるので原子数を増やすことは容易

汎用NNP構成の流れ
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機械学習ポテンシャル作成の流れ

機械学習ポテンシャルは（１）構造の記述（２）モデリングの違いで大別

常に使用するメリット・目的を常に念頭におくこと

生データ

Nα

構造の記述

前処理

予測
サンプ
リング

モデリング

解析

データ予測

DFT計算結果

（説明変数）原子の配置

（目的変数）エネルギー

　　　　　（またはforce）

説明変数の低次元化

• Symmetry Function

• Structural fingerprint

• SOAP

• Coulomb Matrix

• MBTR

回帰モデル

Neural network

多項式展開

ガウス過程回帰

Kernel ridge回帰

High-Throuput MD

• 安定構造探索

• 材料スクリーニング

• MDからの拡散係数計算

• 網羅的NEB計算
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SOAP記述子とGAP
GAP: Gaussian Approximation Potential 

VOLKER L. DERINGER AND GÁBOR CSÁNYI PHYSICAL REVIEW B 95 , 094203 (2017)
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FIG. 2. Potential-energy scans for an isolated carbon dimer. This
plot, with DFT data as reference (blue), allows us to assess the use
of different structural descriptors: all three combined are needed for
a high-quality fit (see text).

To illustrate the role of the combined descriptors, we use
different (and increasingly complex) GAP models to compute
the potential-energy curve for an isolated carbon dimer; these
models have been fitted to the full bulk and surface training
set described below that additionally incorporates DFT data
points between 0.8 and 3.7 Å in small increments. The results
are summarized in Fig. 2: GAP models using 2b descriptors
only, or a combination of 2b+3b, reproduce the minimum
and the repulsion at small C-C distances reasonably well, but
the longer-range behavior is not yet correctly described. An
interesting result is seen when using a many-body descriptor
only: the fit is very good for the region where data points
(blue circles) are provided, but shows unphysical behavior at
r < 0.8 Å; this can, and will, then lead to bad extrapolation in
practical simulations. By contrast, a GAP model combining all
three descriptors [Eq. (12)] gives a highly satisfactory result
(red line in Fig. 2).

III. COMPUTATIONAL METHODS

A. General protocol for melt-quench simulations

Structural data were obtained from melt-quench MD,
following protocols that are well established for a-C [24,26].
Initial simulations were performed in the DFT framework,
subsequent ones with GAP, but both employed the same
temperature protocol. For each simulation, an (unstable)
simple-cubic lattice of carbon atoms was generated at the
appropriate density and held at a constant temperature of 9000
K for 3 ps. The simulation cell was then held in the liquid state
at 5000 K (3 ps), quenched with an exponentially decaying
temperature profile (0.5 ps), and finally annealed at 300 K
(3 ps). The time step was 1 fs in all MD simulations.

B. DFT-based (“ab initio”) molecular dynamics

Structures for initial training, as well as benchmarks for
a-C properties, were generated using DFT-based ab initio MD,
using the QUICKSTEP scheme and a stochastic Langevin ther-

mostat [61] as implemented in CP2K [62,63]. Electronic wave
functions were described at the ! point using a mixed-basis
scheme with Goedecker-Teter-Hutter pseudopotentials [64]
and a cutoff energy of 250 Ry. Double-ζ quality basis functions
were used for the carbon 2s and 2p levels.

Exchange and correlation were treated in the local density
approximation (LDA) [65], both during ab initio MD and
training-data generation. This functional, despite its simplicity,
has long been used for atomistic simulations of a-C and is still
the de facto standard for many current applications [15,28,29].
Further work may be concerned with the application of
higher-level DFT methods, such as computationally much
more expensive hybrid functionals, or the implementation of
dispersion corrections; these will likely be interesting additions
to the GAP framework, but are beyond the scope of this study.

C. Construction of the training database

Our training database contains structural snapshots from
ab initio MD and also, as it is iteratively extended, from GAP-
driven simulations. No matter how generated, all structures
are then subjected to single-point DFT-LDA computations to
yield well-converged energies and forces for training. This was
done using CASTEP [66] with dense reciprocal-space meshes
(maximum spacing 0.03 Å−1) [67], a 650-eV cutoff for plane-
wave expansions, and an extrapolation scheme to counteract
finite-basis errors [68]. Gaussian smearing of 0.1 eV width
was applied to electronic levels. The halting criterion for SCF
iterations was #E < 10−8 eV.

Initial training data were computed for snapshots from
ab initio MD melt-quench trajectories, and a preliminary GAP
was fitted to those data. The resulting potential reproduced
the structure of the 9000-K liquid well, that of the 5000-K
liquid satisfactorily, but not yet that of the amorphous phase.
In retrospect, this is easily understood: the 9000-K liquid is
highly diffusive, and so one single 3-ps trajectory apparently
contains sufficiently different atomic environments to sample
configuration space during training. A quenched amorphous
structure, by contrast, is essentially one single snapshot with
thermal fluctuations but no major changes in connectivity.
Training from DFT data alone would thus incur significant
expense, as each uncorrelated a-C sample would require a
full melt-quench trajectory (9500 steps) of which only the last
snapshot was of use.

Instead, an initial GAP was used to generate liquid
structures at 5000 K, which were then briefly re-equilibrated
(500 steps) and quenched (500 steps) using ab initio MD. This
was done for 10 uncorrelated structures each at 2.0, 3.0, 3.25,
and 3.5 g cm−3, thus placing more emphasis on high-density
amorphous phases which are richer in tetrahedral (“sp3”)
motifs and thus structurally most different from the liquids.

The resulting, amended database was used to train a new
GAP, which was further extended iteratively by performing
melt-quench simulations fully driven by the previous GAP
version, as is common practice in the development of ML
potentials [40,47]. Thereby, all GAP-MD simulations were
carried out using a Langevin thermostat as implemented in
QUIPPY (http://www.libatoms.org) and the same temperature
profiles as in the CP2K simulations. A typical protocol included
the generation of 100 independent structures at densities of

094203-4

✓  ガウス過程回帰で相互作用を記述
✓  Cの相互作用を2-, 3-, many-bodyと展開
✓  2- and 3-body: Gaussian kernelを利用
✓  Many-body: Simple dot product kernel

Descriptor
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In the above expression, the δ are scaling parameters, and
each corresponds to the distribution of energy contributions
that a given interaction term has to represent. We choose the
largest value for the 2b terms, which describe the largest share
of the total energy; on top of that, we add a 3b term, and finally
the many-body term with the smallest δ(d ).

The local energy corresponding to each descriptor d ∈
{2b,3b,MB} is given by a linear combination of kernel
functions [35]

ε(d )(q(d )) =
N

(d )
t∑

t=1

α
(d )
t K (d )(q(d ),q(d )

t

)
, (2)

where t denotes one of Nt training configurations qt , each
of which attains a weighting coefficient αt during fitting, and
K is a covariance kernel which quantifies how similar the
input configuration q is to the t th training configuration qt .
In practice, we sparsify the representation and only allow the
sum to range over a number of “representative points” drawn
from the full training database (Nt ≪ Nfull). The number of
representative points differs for each descriptor and must be
carefully controlled during training.

Both for 2b and 3b contributions, we use a squared
exponential kernel [35]
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where ξ is an index running over the components of the
descriptor vector q(d ). In the case of pairs, the descriptor has
one single scalar component (namely, the distance r12 between
the two atoms involved):

q(2b) = |r2 −r1| ≡r12 ; (4)

for triplets, we do not directly use the natural coordinates r12,
r13, and r23, but a different form to enforce symmetry over
permutation of the neighbor atoms 2 and 3 [52]:

q(3b) =

⎛

⎝
r12 + r13

(r12 −r13)2

r23

⎞

⎠. (5)

Note that with this choice of descriptors, the first term in
Eq. (1) is equivalent to a pair potential, and the second is a
generic three-body potential, but in the GAP framework both
do not impose constraints on the specific functional form.

For the many-body term, we use the recently introduced
smooth overlap of atomic positions (SOAP) [53] descriptor,
which has proven successful in generating GAP models for
tungsten [40], in classifying diverse molecular and solid-state
structures [59], and very recently in constraining structural
refinements of amorphous Si [60]. We briefly review the most
pertinent features; detailed formulas and derivations are in
Ref. [53]. SOAP starts from the neighborhood density of a
given atom a, defined as

ρa(r) =
∑

b

exp
[
−(r −rab)2

2σ 2
at

]
× fcut(rab), (6)

where the sum is over neighboring atoms, and the cutoff
function fcut, which ensures compact support, goes smoothly

to zero at rcut over a characteristic width r(. The parameter
σat ultimately controls the smoothness of the potential. The
neighbor density is expanded into a local basis of orthogonal
radial basis functions gn and spherical harmonics Ylm,

ρa(r) =
∑

nlm

c
(a)
nlm gn(r)Ylm(r̂), (7)

and the expansion coefficients are used to form the spherical
power spectrum

p
(a)
nn′l =

√
8π2

2l + 1

∑

m

(
c

(a)
nlm

)∗
c

(a)
n′lm, (8)

which is invariant both to permutations over neighbors and to
three-dimensional (3D) rotations of the neighbor environment.
We use the elements of a finite truncation of the power
spectrum (up to n ! nmax and l ! lmax) as components of
the many-body descriptor vector q(MB)

a , which furthermore is
normalized to have unit length.

The kernel function for the SOAP term is the simple dot
product
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and we find it advantageous to raise it to a small integer power
for a sharper distinction between different environments. This
gives the final kernel

K (MB)(q(MB)
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t

)
=

∣∣q(MB)
a · q(MB)

t

∣∣ζ . (10)

This dot product kernel is a natural choice to use with the
power spectrum descriptor, as it makes the kernel equivalent
(up to normalization) to the integrated overlap of the original
neighbor densities
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The expression for the total energy in our GAP model is
therefore given by
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where all fitting coefficients α enter linearly, and therefore we
can obtain them simply using linear algebra. This is in contrast
with the difficult nonlinear parameter optimization required
both for traditional interatomic potentials and for some other
ML schemes, e.g., artificial neural networks.

The above discussion does not include the prescription
for obtaining the linear fitting coefficients. In practice, this
is complicated due to the fact that the quantum-mechanical
data are only available in the form of total energies, atomic
forces, and virial stresses. The full formalism simultaneously
includes sparsification, multiple energy terms, and fitting to
total energies and their derivatives; it is given elsewhere [52].
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In the above expression, the δ are scaling parameters, and
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where ξ is an index running over the components of the
descriptor vector q(d ). In the case of pairs, the descriptor has
one single scalar component (namely, the distance r12 between
the two atoms involved):

q(2b) = |r2 −r1| ≡r12 ; (4)

for triplets, we do not directly use the natural coordinates r12,
r13, and r23, but a different form to enforce symmetry over
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Note that with this choice of descriptors, the first term in
Eq. (1) is equivalent to a pair potential, and the second is a
generic three-body potential, but in the GAP framework both
do not impose constraints on the specific functional form.

For the many-body term, we use the recently introduced
smooth overlap of atomic positions (SOAP) [53] descriptor,
which has proven successful in generating GAP models for
tungsten [40], in classifying diverse molecular and solid-state
structures [59], and very recently in constraining structural
refinements of amorphous Si [60]. We briefly review the most
pertinent features; detailed formulas and derivations are in
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given atom a, defined as
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We use the elements of a finite truncation of the power
spectrum (up to n ! nmax and l ! lmax) as components of
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where all fitting coefficients α enter linearly, and therefore we
can obtain them simply using linear algebra. This is in contrast
with the difficult nonlinear parameter optimization required
both for traditional interatomic potentials and for some other
ML schemes, e.g., artificial neural networks.

The above discussion does not include the prescription
for obtaining the linear fitting coefficients. In practice, this
is complicated due to the fact that the quantum-mechanical
data are only available in the form of total energies, atomic
forces, and virial stresses. The full formalism simultaneously
includes sparsification, multiple energy terms, and fitting to
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FIG. 6. Molecular dynamics simulations of Li diffusion in a graphite-like framework at 1000 K. Results of GAP-MD have been structurally benchmarked
against DFT-MD data. (a) Exemplary GAP-MD trajectory visualized by plotting coordinates of Li atoms at equally spaced time intervals as purple dots, whereas
the carbon framework is shown at a single time step to ease visibility. (b) Radial distribution function (RDF) analysis for Li–C contacts in this DFT-MD trajectory
(green) and for five separate GAP-MD trajectories computed in the same structure (purple). (c) The same for the Li–Li RDF. One exemplary dataset is shown
for a GAP-MD simulation using a potential without an effective Li–Li potential included (Sec. II D), and this clearly evidences overestimated Li–Li interactions
at distances up to 4 Å (dashed light blue line). (d) The same for the angular distribution function (ADF), determined for all C–Li–C angles with a maximum
bond length of 3.0 Å.

these RDF analyses, the ADF in Fig. 6(d) is a more complex
structural indicator and is also very satisfactorily reproduced
by GAP-MD.

We assume that the remaining small differences, in part,
may be due to likewise small differences in the underlying DFT
methods: different implementations and pseudopotentials are
used for generating the GAP reference data and the DFT-
MD trajectory. Still, the GAP reproduces all general structural
features.

FIG. 7. Vibrational densities of states (VDOS), plotted for individual MD
trajectories as in Figs. 6(b) and 6(c) and separately for the host structure (top)
and guest atoms (bottom).

As a final means of validation, we extract from the tra-
jectories the vibrational densities of states (VDOS), using
the velocity–velocity autocorrelation function. This provides
information about the atomic motion in the simulations and a
link between the local structure and diffusion dynamics. We
inspect the VDOS individually, both for the host framework
and the Li atoms, in Fig. 7. There is good agreement between
DFT and GAP data, and the general features of the VDOS are
well reproduced by our model. This is particularly so in the
higher-frequency range (>15 THz), which relates mostly to
interatomic interactions (such as bond-stretching vibrations).
At lower frequencies, we observe small discrepancies, while
the general trends are preserved. This frequency range is com-
monly associated with the diffusion process, and so the above
can be understood, considering the short run-time of the calcu-
lation and especially the small size of the systems (again, both
are due to the inherent computational and scaling limitations
of the DFT benchmark and do not change the principal validity
of our tests).

V. CONCLUSIONS

Machine-learning-based interatomic potentials for guest
atoms in host structures can be created by fitting to the energy
and force differences which they induce. We exemplified this
for Li intercalation in graphitic and disordered carbon struc-
tures, using the GAP framework to construct an interatomic
potential model. Notwithstanding notable remaining numeri-
cal energy errors, reaching up to ⇡0.4 eV/at. for Li insertion,

応用：グラファイト内部のLiイオン拡散シミュレーション 
Fujikake et al., J. Chem. Phys. 148, 241714 (2018).
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DeePMD

DeePMD-kitが公開されている

So far, GDML has only been used for relatively small
molecules.
In this Letter, we introduce a neural network (NN) based

scheme for MD simulations, called deep potential molecu-
lar dynamics (DPMD), which overcomes the limitations
associated with auxiliary quantities like the symmetry
functions or the Coulomb matrix (All the examples
presented in this work are tested using the DeePMD-kit
package [21], which is available at [22]). In our scheme, a
local reference frame and a local environment is assigned to
each atom. Each environment contains a finite number of
atoms, whose local coordinates are arranged in a symmetry
preserving way following the prescription of the deep
potential method [23], an approach that was devised to
train a NN with the potential energy only. With typical
AIMD data sets, this is insufficient to reproduce the
trajectories. DPMD overcomes this limitation. In addition,
the learning process in DPMD improves significantly over
the deep potential method thanks to the introduction of a
flexible family of loss functions. The NN potential con-
structed in this way reproduces accurately the AIMD
trajectories, both classical and quantum (path integral),
in extended and finite systems, at a cost that scales linearly
with system size and is always several orders of magnitude
lower than that of equivalent AIMD simulations.
In DPMD, the potential energy of each atomic configu-

ration is a sum of “atomic energies” E ¼
P

iEi, where Ei is
determined by the local environment of atom i within a
cutoff radius Rc and can be seen as a realization of the
embedded atom concept. The environmental dependence
of Ei, which embodies the many-body character of the
interactions, is complex and nonlinear. The NN is able to
capture the analytical dependence of Ei on the coordinates
of the atoms in the environment in terms of the composition
of the sequence of mappings associated with the individual
hidden layers. The additive form of E naturally preserves
the extensive character of the potential energy. Because
of the analyticity of the atomic energies, DPMD is, in
principle, a conservative model.
Ei is constructed in two steps. First, a local coordinate

frame is set up for every atom and its neighbors inside Rc
[24]. This allows us to preserve the translational, rotational,
and permutational symmetries of the environment, as
shown in Fig. 1, which illustrates the format adopted for
the local coordinate information fDijg. The 1=Rij factor
present in Dij reduces the weight of the particles that are
more distant from atom i.
Next, fDijg serves as input of a deep neural network

(DNN) [25], which returns Ei in output (Fig. 2). The DNN is
a feed forward network, in which data flow from the input
layer to the output layer (Ei), through multiple hidden layers
consisting of several nodes that input the data dinl from the
previous layer and output the data doutk to the next layer. A
linear transformation is applied to the input data, i.e., d̃k ¼P

lwkldinl þ bk, followed by action of a nonlinear function

φ on d̃k, i.e., doutk ¼ φðd̃kÞ. In the final step from the last
hidden layer to Ei, only the linear transformation is applied.
The composition of the linear and nonlinear transformations
introduced above provides the analytical representation of
Ei in terms of the local coordinates. The technical details of
this construction are discussed in the Supplemental Material
[26]. In our applications, we adopt the hyperbolic tangent for
φ and use five hidden layers with decreasing number of
nodes per layer, i.e., 240, 120, 60, 30, and 10 nodes,
respectively, from the innermost to the outermost layer. It
is known empirically that the hidden layers greatly enhance
the capability of neural networks to fit complex and highly
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atom i
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R

or

FIG. 1. Schematic plot of the neural network input for the
environment of atom i, taking water as an example. Atom j is a
generic neighbor of atom i, ðex; ey; ezÞ is the local frame of atom
i, ex is along the O─H bond, ez is perpendicular to the plane of
the water molecule, ey is the cross product of ez and ex, and
ðxij; yij; zijÞ are the Cartesian components of the vector Rij in this
local frame. Rij is the length of Rij. The neural network input Dij
may either contain the full radial and angular information of atom
j, i.e., Dij ¼ f1=Rij; xij=R2

ij; yij=R
2
ij; zij=R

2
ijg or only the radial

information, i.e., Dij ¼ f1=Rijg. We first sort the neighbors of
atom i according to their chemical species, e.g., oxygens first then
hydrogens. Within each species, we sort the atoms according to
their inverse distances to atom i, i.e., 1=Rij. We use fDijg to
denote the sorted input data for atom i.

FIG. 2. Schematic plot of the DPMD model. The frame in the
box is an enlargement of a DNN. The relative positions of all
neighbors with respect to atom i, i.e., fRijg, is first converted to
fDijg, then passed to the hidden layers to compute Ei.
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RDFs of ice are reported in the Supplemental Material.
A higher-order correlation function, the probability distri-
bution function of the O─O bond orientation order param-
eter Q6 [36], is additionally reported in the Supplemental
Material and shows excellent agreement between DPMD
and AIMD trajectories. In the case of the molecules, we
perform DPMD at the same temperature of the original
data, using a Langevin thermostat with a damping time
τ ¼ 0.1 ps. The corresponding distributions of interatomic
distances are very close to the original data (Fig. 4).
Scalability and computational cost.—All the physical

quantities in DPMD are sums of local contributions. Thus,
after training on a relatively small system, DPMD can be
directly applied to much larger systems. The computa-
tional cost of DPMD scales linearly with the number of
atoms. Moreover, DPMD can be easily parallelized due to
its local decomposition and the near-neighbor dependence
of its atomic energies. In Fig. 5, we compare the cost of
DPMD fixed-cell simulations (NVT) of liquid water with
that of equivalent simulations with AIMD and the empiri-
cal FF TIP3P (transferable intermolecular potential with 3
points) [41] in units of CPU core seconds/step/molecule.
While in principle the environmental dependence of Ei

is analytical, in our implementation, discontinuities are
present in the forces, due to adoption of a sharp cutoff
radius, limitation of angular information to a fixed number
of atoms, and abrupt changes in the atomic lists due to

sorting. These discontinuities are similar in magnitude to
those present in the AIMD forces due to finite numerical
accuracy in the enforcement of the Born-Oppenheimer
condition. In both cases, the discontinuities are much
smaller than thermal fluctuations and perfect canonical
evolution is achieved by coupling the systems to a
thermostat. We further note that long-range Coulomb
interactions are not treated explicitly in the current imple-
mentation, although implicitly present in the training data.
Explicit treatment of Coulombic effects may be necessary
in some applications and deserves further study.

TABLE III. The equilibrium energy and density, Ē and ρ̄, of
water and ices, with DPMD and AIMD. The numbers in square
brackets are the AIMD results. The numbers in parentheses are
statistical uncertainties in the last one or two digits. The training
AIMD trajectories for the ices are shorter and more correlated
than in the water case.

System Ē (eV=H2O) ρ̄ (g=m3)

Liquid
water

−467.678ð2Þ [−467.679ð6Þ] 1.013(5) [1.013(20)]

Ice Ih (b) −467.750ð1Þ [−467.747ð4Þ] 0.967(1) [0.966(6)]
Ice Ih (c) −468.0478ð3Þ [−468.0557ð16Þ] 0.950(1) [0.949(2)]
Ice Ih (d) −468.0942ð2Þ [−468.1026ð9Þ] 0.986(1) [0.985(2)]
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FIG. 3. Correlation functions of liquid water from DPMD
and PI-AIMD. (Left) RDFs. (Right) The O-O-O ADF within a
cutoff radius of 3.7 Å.

FIG. 4. Interatomic distance distributions of the organic mol-
ecules. The solid lines denote the DPMD results. The dashed
lines denote the AIMD results.
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FIG. 5. Computational cost of MD step versus system size, with
DPMD, TIP3P, PBEþ TS, and PBE0þ TS. All simulations are
performed on a Nersc Cori supercomputer with the Intel Xeon
CPU E5-2698 v3. The TIP3P simulations use the Gromacs
codes (version 4.6.7) [42]. The PBEþ TS and PBE0þ TS
simulations use the Quantum Espresso codes [43].
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A higher-order correlation function, the probability distri-
bution function of the O─O bond orientation order param-
eter Q6 [36], is additionally reported in the Supplemental
Material and shows excellent agreement between DPMD
and AIMD trajectories. In the case of the molecules, we
perform DPMD at the same temperature of the original
data, using a Langevin thermostat with a damping time
τ ¼ 0.1 ps. The corresponding distributions of interatomic
distances are very close to the original data (Fig. 4).
Scalability and computational cost.—All the physical

quantities in DPMD are sums of local contributions. Thus,
after training on a relatively small system, DPMD can be
directly applied to much larger systems. The computa-
tional cost of DPMD scales linearly with the number of
atoms. Moreover, DPMD can be easily parallelized due to
its local decomposition and the near-neighbor dependence
of its atomic energies. In Fig. 5, we compare the cost of
DPMD fixed-cell simulations (NVT) of liquid water with
that of equivalent simulations with AIMD and the empiri-
cal FF TIP3P (transferable intermolecular potential with 3
points) [41] in units of CPU core seconds/step/molecule.
While in principle the environmental dependence of Ei

is analytical, in our implementation, discontinuities are
present in the forces, due to adoption of a sharp cutoff
radius, limitation of angular information to a fixed number
of atoms, and abrupt changes in the atomic lists due to

sorting. These discontinuities are similar in magnitude to
those present in the AIMD forces due to finite numerical
accuracy in the enforcement of the Born-Oppenheimer
condition. In both cases, the discontinuities are much
smaller than thermal fluctuations and perfect canonical
evolution is achieved by coupling the systems to a
thermostat. We further note that long-range Coulomb
interactions are not treated explicitly in the current imple-
mentation, although implicitly present in the training data.
Explicit treatment of Coulombic effects may be necessary
in some applications and deserves further study.
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statistical uncertainties in the last one or two digits. The training
AIMD trajectories for the ices are shorter and more correlated
than in the water case.
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Liquid
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lines denote the AIMD results.
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DPMD, TIP3P, PBEþ TS, and PBE0þ TS. All simulations are
performed on a Nersc Cori supercomputer with the Intel Xeon
CPU E5-2698 v3. The TIP3P simulations use the Gromacs
codes (version 4.6.7) [42]. The PBEþ TS and PBE0þ TS
simulations use the Quantum Espresso codes [43].

PHYSICAL REVIEW LETTERS 120, 143001 (2018)
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Phys. Rev. Lett. 120, 143001 (2018).

[モデリング]

・Behler-ParrinelloのNNフレームワーク
[記述子]

・回転対称性を担保するような内部座標

・距離の逆数で局所環境を表現

・座標ベースでのNNPを実現

分子系でも高精度のポテンシャルを実現
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アモルファス材料内部の拡散経路探索

拡散ネットワークの全体図

大問題：高精度に計算できるDFTではコストがかかりすぎる
（N3 回の構造最適化 x 計算時間 T)   N~50, T~1 hour以上 = 13 year 
  さらに拡散障壁の計算も必要…

Etot = Eamorph +�ECu +�Eopt

Cu挿入による
エネルギー変化

構造緩和による
エネルギー変化

Behler-Parrinelloの方法でポテンシャル作成
✓  アモルファス母体を「場」として取り扱う
✓  学習対象は拡散粒子（Cu）のみ
✓３元系でありながら小規模なネットワークで記述可能
✓  事実上１粒子の計算なので、エネルギー評価も容易
✓  アモルファスは動かせないのでMDはできない

W. Li, Y. Ando, and S. Watanabe, J. Phys. Soc. Jpn. 86, 104004 (2017).
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原子拡散計算の大規模化

214106-5 Li et al. J. Chem. Phys. 147, 214106 (2017)

All computations were carried out using an amorphous Li3PO4
(a-Li3PO4) structure created with the typical melt quenching
method: The �-Li3PO4 structure (containing 32 atoms) was
melted and equilibrated for 15 ps at 6000 K and then quenched
to 300 K at the rate of 1 K/fs. At last, the structure was equi-
librated for 3 ps at 300 K. The aforementioned process was
performed with ab initio MD. This a-Li3PO4 structure was
further relaxed with NN potential and DFT until the maximum
force acting on atoms became less than 0.01 eV/Å to obtain
the final models for the NN potential and DFT simulations,
respectively.

The two final structures are almost the same: The dis-
crepancy in the atomic positions between the two is 0.02 Å
in average and 0.05 Å at a maximum. The total free energy
is 200.93 eV in the model for the NN potential, while

200.90 eV for DFT. The final model for the DFT is shown in
Fig. 3.

It should be noted that these models are partially crystal-
lized after the annealing and relaxation procedures and thus
may not be fully relevant to represent the structure of amor-
phous Li3PO4 synthesized experimentally via the pulsed laser
deposition technique. Nevertheless, hereafter we call these
models “amorphous” for simplicity. To construct a more rea-
sonable model of amorphous Li3PO4 requires the use of much
a larger supercell and a slightly different composition. The
structure of amorphous Li3PO4 will be discussed in Sec. V.

B. Vacancy formation energy

The vacancy formation energy was defined as

Ef = E[VLi] � E[bulk] + µLi, (4)

in which E[VLi] is the total energy of the supercell containing
one Li vacancy, E[bulk] is the total energy of the disordered
Li3PO4 supercell, and µLi is the chemical potential of Li
obtained from DFT calculation of a perfect Li bcc crystal. The
supercells with a vacancy have been generated by removing
a Li atom and then relaxed the structure. Since the supercell
contains 12 Li atoms that are not equivalent to one another,
we can obtain 12 different Li vacancy formation energies.
Figure 4 shows the comparison of the vacancy formation

FIG. 3. The final structure of the amorphous Li3PO4 model (Li12P4O16) after
melt-quenching simulation. The structure was fully optimized with DFT.

FIG. 4. Li vacancy formation energies in the amorphous Li12P4O16 model
calculated by the DFT and NN potential.

energies between DFT and NN potential. The average dis-
crepancy is 0.029 eV and the maximum is 0.040 eV. The final
vacancy structures relaxed by DFT and NN potential were
also quite similar. The average and maximum differences in
atomic positions are about 0.03 Å and 0.08 Å, respectively.
From Fig. 4, we can also see that the NN potential system-
atically underestimated the energy of Li vacancy structures.
Since the energies are predicted based on the structural simi-
larity, it may occur that the NN potential gives a systematical
error for one kind of configurations. However, due to the very
complicated formula of NNs, it is difficult to analyze the origin
of such an error. On the other hand, we would like to point out
that the deviation is quite small (about 1 meV/atom) and less
than the RMSE of energy prediction. So we do not think that
this systematical underestimation affects the conclusion of the
present study.

It should be noted that the large formation energies
(⇠5 eV) obtained here mean very small probability of forma-
tion of Li vacancy. In reality, a vacancy-interstitial pair would
be formed rather than an isolated vacancy. Since the purpose
of this section is the verification of the applicability of the NN
potential in various calculations, we do not discuss the cases
with complex defects here.

C. Di�usion paths and network

Here we examine the Li vacancy diffusion network
(including the Li migration paths, barrier energies, and the
topology connection of paths) using the NEB method. This
method is frequently used to find migration paths and their
energies. In this method, a number of intermediate images,
which are constrained by imaginary “spring” force, are inter-
posed between the starting and ending equilibrium positions
of the target atom. By optimizing the atomic coordinates in
each image according to the forces given by both imagi-
nary spring and real potential energy surface, we can find the
minimum energy path of atom migration between the two equi-
librium sites. The optimization can be based on the potential
energy surface provided by the DFT calculation or classical
interatomic potential (e.g., NN potential).

In the present study, we assumed that a Li atom can
directly hop to the neighbor vacancy site when the distance

214106-8 Li et al. J. Chem. Phys. 147, 214106 (2017)

As can be seen in this figure, there are only slight discrepan-
cies between the radial distribution functions obtained from
the NN potential and DFT simulations.

The calculation speed of the NN potential MD is much
faster than the ab initio MD. For example, generating a tra-
jectory described above takes about 96 h on 192 cores (Intel
Xeon processor L5640) in the case of ab initio method, while
it takes only 4.5 h on a single core of the same processor in
the case of the NN potential. That is, the calculation speed of
NN potential MD simulations is about 4000 times faster than
the ab initio ones.

Finally, we carried out long time MD simulations (1 ns per
trajectory) to obtain reliable Li diffusivities. The results were
plotted in Fig. 7 together with the KMC results, and the mean
squared displacements of Li along these trajectories are shown
in the supplementary material (Fig. S2). As can be seen from
Fig. 7, the temperature dependence of the evaluated Li diffusiv-
ities obeys the Arrhenius law. The effective activation energy
for diffusion obtained from the linear fitting of the Arrhenius
law is 0.59 eV for the MD results with the NN potential, which
qualitatively agrees with our KMC simulation results using the
same NN potential. The quantitative difference in the diffusion
coefficients seen in Fig. 7 between the MD and KMC can be
attributed to the jump frequency used in our KMC simulations:
The same value of 1013 s 1 was set to the jump frequencies of
all the transitions, which must be a very crude approximation.

V. LARGE-SCALE SIMULATION OF Li DIFFUSION
IN AMORPHOUS Li3PO4

A. Amorphous Li3PO4 structure

By means of DFT calculation, the structure and properties
of crystalline Li3PO4 and LiPON have been studied,32,34,50,51

but the theoretical research on amorphous Li3PO4 is still
scarce. We used the NN potential developed in the present work

to construct large-scale amorphous Li3PO4 models. Accord-
ing to the experimental observation,38,52 the composition of a
Li3PO4 thin film fabricated by pulsed laser deposition is often
slightly different from the stoichiometric one. The ratio of
Li/P is about 2.9 according to the inductively coupled plasma
atomic emission spectroscopy.38 The deviation from the stoi-
chiometric value can be attributed to the partial condensation
reaction of Li3PO4, i.e., 2Li3PO4 ! Li4P2O7 + Li2O, where
the resultant Li2O is lost during the fabrication.

The amorphous models having similar Li/P ratio were
generated as follows. We started from three crystalline super-
cells composed of 16, 64, and 128 Li3PO4 units. Then, one,
three, and six Li2O units were removed from the supercells
to set the Li/P ratio as 2.875, 2.906, and 2.906, respectively.
The supercells contain 125, 503, and 1006 atoms, respectively.
For the three initial structures, the amorphous models were
generated by the simulated annealing method with the NN-
potential-based MD. For comparison, ab initio MD was also
used to perform the same simulated annealing procedures on
the smallest model (Li46P16O63). The detailed procedure is
as follows: (1) initial structures were heated to 2000 K and
thermalized for 30 ps; (2) the structures were subsequently
quenched to 300 K with a speed of 0.5 K/fs; (3) the final struc-
tures were equilibrated for 5 ps at 300 K and then relaxed
until the maximum force acting on an atom was smaller than
0.01 eV/Å.

The resultant structures are shown in Fig. 10. We can
see a strong similarity between the structures of Li46P16O63
created by the NN potential and ab initio MD. This demon-
strates that the NN potential can reproduce final structures of
the melt-quench DFT simulations. On the other hand, it is
also noticeable that the generated Li46P16O63 structures are
partially crystallized. The arrangements of Li and P atoms
in the Li46P16O63 structures are analogous to those in � and
�-Li3PO4, though the orientations of P–O tetrahedrons are

FIG. 10. The structures of amorphous
Li3PO4 created by the melt-quenching
simulations. (a) The resultant structures
with different size, and the shape of
P2O7

4 dimmers inside them. (b) The
radial distribution functions of corre-
sponding amorphous structures. Each
function is averaged over 5 ps MD run
at 300 K.

DFT for small cell Simulation for large cell

NN

DFTと同様の同型分布・拡散係数の実験値を再現

小規模・高精度計算の
結果を学習 学習結果を使って大規模化

W. Li, Y. Ando, S. Minamitani and S. Watanabe, J. Chem. Phys. 147, 133903 (2017).
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The phonon density of state (DOS) calculated from ML force fields. 
[Science, 1997, 275, 1925–1927; Europhys. Lett., 2002, 60, 269–275; Phys. Rev. 
Lett., 1985, 54, 441–443]

Amorphous model Phonon density of state

1728 atoms

MLFFを使うことで大規模系をゆっくりアニール出来る（0.01K/fs） 
Si-Oネットワークの環構造をDFTより改善でき、フォノン状態密度も良い結果が得られた

W. Li, and Y. Ando, Phys, Chem. Chem. Phys. 20, 30006 (2018).

アモルファスの振動物性評価と構造同定



• 多成分系（４元系以上）に弱い


• 第一原理計算の結果がないと何もできない


• 構造データが十分かどうか、の検証方法が少ない


• 学習モデルの軽量・高速化, 入力の低次元化


• 利用できるプログラムがまだ少ない


• ポテンシャルの妥当性をきちんと評価する必要あり
!18

機械学習ポテンシャルの課題



• 原子分子シミュレーションは原子間相互作用を決めることが根幹にある


• 原子間相互作用の標識は技術革新に伴い時代とともに変化してきたが実験
結果に合うようなパラメータを逆問題的に決定することが必須であった


• 第一原理計算の登場により、実験結果ではなくシミュレーション結果を
フィットすることでポテンシャルが構成できるようになった


• Behler-Parrinelloの方法により汎用的なNNが構成可能となった


• 現在ではGAP, DeePMDなどいくつかの手法が提案されている


• アモルファス系に関するこれまでの研究事例：拡散経路, 小規模から大規
模へ繋ぐ, アモルファスの振動特性と構造作成
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まとめ


