Atomistic study on the generation and gliding properties of pyramidal dislocations in magnesium

蕪木 英雄 日本原子力研究開発機構 システム計算科学センター

Atomistic study on the generation and gliding properties of pyramidal dislocations in magnesium

Hideo Kaburaki,

Mitsuhiro Itakura, Masatake Yamaguchi, TomohitoTsuru Japan Atomic Energy Agency

CCSEWS, Mar.29, 2016, Kashiwa

Background and Objectives

 -molecular dynamics method mechanisms of plasticity in highly anisotropic hcp Mg
→ enhancement of ductility for developing Mg alloys
-activation of non-basal dislocations to accommodate strains along the c-axis direction

-the understanding of the core structure and and gliding properties of non-basal pyramidal dislocations by generating them from the crack in the basic configurations (mode III) **Emission of dislocations from the crack tip**

Generation of pyramidal screw dislocations is observed from the crack tip oriented along the Burgers vector on the pyramidal type I (1st order) and type II (2nd order) plane Mode III fracture

Pyramidal type I (1st order)

Two opposite type screw dislocations are created on both sides of the crack by displacing the upper and lower walls.

Pyramidal type II (2nd order)

have a corrugated structure.

Stress-strain relation for the emission of pyramidal dislocations from the crack tip

Generation and gliding of pyramidal II screw dislocations from the microcrack under the multiaxial loading boundary condition

The microcrack is created on the pyramidal II plane.

upper boundary (displacing to the front)

lower boundary \otimes (displacing inward)

The upper and lower boundaries are displaced in the opposite directions along the Burgers vector Mode III fracture mode

Pyramidal type II screw dislocation

Shear displacement 20 m/sec

Pyramidal type II screw dislocation

Shear displacement 2 m/sec

Conclusions

- Non-basal pyramidal screw dislocations have been created from the crack tip under the external shear stress.
- Core structures of both pyramidal type I and type II screw dislocations are elucidated by the visualization of the molecular dynamics simulation.

The core of the pyramidal type II screw dislocation is found to have a corrugated structure, while that of pyramidal type I screw dislocation has a smooth stacking fault. Both dislocations are able to cross-slip to other pyramidal planes.

 It is observed that a combined screw dislocation, consisting of PI and PII dislocation cores, is created under the multiaxial loading boundary condition. It is found that PI and PII screw dislocations can easily cross-slip to each other's slip plane to form a combined screw dislocation.