NUMERICAL APPROACH IN COMBUSTION AND PROPULSION TECHNOLOGIES

Takita K.

Department of Aerospace Engineering Tohoku University 6-6-01 Aoba, Aramaki, Sendai 980-8579, JAPAN <u>takita@scrj.mech.tohoku.ac.jp</u>

A recent trend in numerical simulation in combustion and propulsion technologies is presented. One characteristic of simulation of combustion flow is huge numbers of species and elementary reactions related to combustion reaction. For example, a full chemical kinetics for heptane fuel (C_7H_{16}) which is a typical component of a gasoline fuel involves more than 500 species and more than 3,000 elementary reactions. Therefore, to simulate a flame dynamics of such a large hydrocarbon fuel, a supercomputer with high speed and large memory is strongly required. An algorism for automatically reducing numbers of species and reactions is also under development by many researchers. The other characteristic of combustion analysis is a necessity of coupling between fluid dynamics and chemical reactions. Non-linearity in both of equation of fluid dynamics such as Navier-Stokes equation and chemical reaction terms in conservation equations for species makes the combustion analysis complicated and the simulation consumes very long computation time because of a small time step. Moreover, a research of a supersonic ramjet (scramjet) engine is introduced as one topic in the propulsion field. The scramjet engine is considered to be a new propulsion system in hypersonic vehicles or space planes. The key technology for the success of development of the new engine is an achievement of mixing, ignition and combustion within 1 millisecond in a supersonic flow. The author has numerically and experimentally conducted development of ignition and combustion enhancement technique by using plasma in a supersonic flow for several years. A CFD analysis of plasma jet (PJ) ignition in a supersonic flow is demonstrated in the presentation. The PJ ignition includes various phenomena such as chemical reactions, turbulence, shock waves, and plasma physics. The numerical model was validated by a comparison with experimental results.

Numerical approach in combustion and propulsion technologies

Kenichi Takita

Department of Aerospace Engineering, Tohoku University, JAPAN

Combustion technology

More than 80 % of energy for domestic heating, power generation, and transportation is obtained by combustion of fossil fuel.

Only chemical (combustion) propulsion system can get large power to go to space.

> improvement of energy efficiency increase in fuel economy reduce of pollutant emission and CO₂

contribute to environmental issues, energy problems, space technology

Combustion reaction(1)

Overall reaction

 $2H_2 + O_2 = 2H_2O$, $C_3H_8 + 5O_2 = 3CO_2 + 4H_2O$

many species, many elementary reactions

 $H_2 + O_2 = HO_2 + H$ $H + O_2 = OH + O$ $O + H_2 = H + OH$ $H_2 + OH = H_2O + H$

Fuel	Species	Reactions
H ₂	9	20
CH ₄	20	100
C ₃ H ₈	50	300
n-C ₇ H ₁₆	500	3000

Combustion reaction(2)

LES and DNS can be applied for only H₂ and CH₄.

Combustion researchers strongly need

Topics

*Establishment of Skeltal (reduced) reaction mechanism for large hydrocarbons

*Algorithm for automatically reducing numbers of species and elementary reactions from full kinetics

e.g. Computational singular perturbation (CSP) method Direct related graph (DRG) method

Combustion reaction(3)

Coupling of <u>combustion reaction</u> and <u>fluid dynamics</u>

20th century

2D or 3D analysis with 1-step reaction model flame-sheet model (flame thickness is 0)

 $F + O \Longrightarrow P$ k = A [F]^p[O]^q exp (-E/RT) planar flame

Strong non-linear phenomena

1D analysis

with full chemistry

F+O₂

F+02

21st century

DNS or LES with full chemistry of large hydrocarbon fuel

Flame structure

flame thickness is in inverse proportion to pressure and temperature.

high pressure and high temperature are keywords in new technology

Scramjet engine (1)

SCRamjet (Supersonic Combustion Ramjet) engine

Combustion occurs in a supersonic flow

a new air-breathing engine for space plane hypersonic airplane for intercontinental transportation

Scramjet engine (2)

Why do we go to space by an air-breathing engine ?

Rocket engine

carry fuel and oxidizer (e.g. H2 Rocket, Space shuttle--- H_2/O_2) mass of oxidizer is more than 30% in total 9 to 35 times of pay-load

Air-breathing engine

do not need load oxidizer can increase pay-load

many technical issues in operation of air-breathing engine in high Mach No.

*Mach number = (flow velocity)/(sonic velocity)

Scramjet engine (3)

Why do we need to burn fuel in a supersonic flow in the engine ? $\frac{1}{2}$ mv² \longrightarrow heat (increase in temperature of gas)

High seed flow has a large kinetic energy. This large kinetic energy is converted to a thermal energy (increase in temperature of a flow) in the engine.

Scramjet engine (4)

Situation of development of scramjet engine

U.S.A.

Hyper X-43A program (~2004) flight test succeeded in acceleration to M=9.6 with a scramiet engine HiFire, X-51 programs in progress

EC (ESA, ONERA, DLR)

LAPCAT program hypersonic vehicle (M=8) for intercontinental transportation (4 hours from Brussels to Sydney)

Asia (China, India, Korea), Australia, ... fundamental research is in progress

Japan (JAXA Kakuda)

confirmed net thrust in M=4, 6, 8 flows by the engine test on ground flight test of the engine was conducted in March, 2006

Scramjet engine (5)

research of scramjet in Tohoku University

experimental and numerical study of ignition and combustion enhancement by using plasma

Supersonic wind tunnel

test Mach no.: M=1.0, 1.8, 2.3 test section size: 30 mm x 30 mm x 300mm

duration of test: about 30 s

Scramjet engine (6)

ignition and combustion enhancement by plasma ignition of ethylene (C₂H₄) fuel by a PJ torch in a supersonic flow

Scramjet engine (7)

Numerical method

Governing equations:

Raynolds-averaged three-dimensional Navier-Stokes (RANS) equations in the generalized curvilinear coordinate for multispecies

Scheme: third-order SHUS scheme scheme for convective terms second-order central-difference scheme for diffusive terms Time integral: Matrix-free LU-SGS method

Combustion model:

 H_2 combustion model-----9 species, 33 elementary reactions **Turbulence model:** k- ω SST two equations model

Size of area in computation: x (30mm), y (30mm), z (300mm) same as experiment Mesh number: 157 x 55 x 71 (total 613,085)

Future problems

1 Simulation of combustion under severe conditions

high pressure, high temperature conditions (sometimes, beyond critical point) e.g.) Rocket engine (H2A, ...), Automobile,

2 Simulation of large hydrocarbon fuels

C3, C4, C5, C6, C7,.... development of reduced reaction mechanism is important

3 LES analysis of supersonic turbulent combustion flow

4 Including plasma chemistry in analysis of combustion flow