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In this study, I introduce a novel implementation method of finite element method in order to 
reduce the memory access the Cell which is a kind of heterogeneous multicore processor. 
Thanks to the invention of multicore processor, the computational performance per one silicon 
chip is rapidly enlarging, therefore, the relative memory bandwidth, which is growing slower 
than computational performance and usually limits the performance of scientific computing 
code, is decreasing. The Cell, which is developed by Sony, Toshiba, and IBM, is the one of 
multicore processor, and has relatively high computational performance than the other 
commodity processors. In order to hide the poorness of memory bandwidth, small but high 
speed memory, which is called Local store(LS), is set just under the synergetic processing 
unit(SPU) in the Cell architecture. Since higher computational performance of the Cell is 
obtained when the less access to the main memory is achieved, we introduced the method 
which decreased the access ratio to the main memory at the expense of computational effort. 
As a result, we observed better performance by comparing with ordinal finite element Poisson 
solver, which run on PowerPC processing unit(PPU) of the Cell. 
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Background

• Processing capacity of computer chip is still 
growing by the Moor’s law
– Especially, invention of multicore processor helps 

growth

• But, growth of memory bandwidth to one chip is 
lesser than that of processing capacity.

• Cache memory or similar kind of feature is set in 
order to increase effective memory bandwidth.
– Not effective for most scientific computing,,,
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Objectives

• New methodology reducing the memory access, since the 
relative memory bandwidth will tend to be narrow for near 
future.

• Sony, Toshiba, and IBM provided novel processor chip 
named Cell

• Cell is
– A kind of heterogeneous multicore processor

– Has a cache like memory whose behavior can be strictly controlled 
by the programmer

• In this study, I introduced memory access saving 
implementation of finite element method, and the 
effectiveness was investigated by comparing the 
performance of usual FEM implementation.
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The cell processor (PowerXCell 8i)
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Naive FEM solver

Discritization A1 x b=

A2 x b=

An x b=

…

Element-wise

equations

Aall
x b=

Entire system 

equation

Aall
x b=

Entire system 

equation

Aall
Matrix –vector 

product

Vector dot 

product

Vector dot 

product

Iterative solver

Solution!
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Conjugate gradient

Matrix-vector multiplication

The coefficient matrix is 

only required at these two 

lines, and only with matrix –

vector multiplication form.
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Memory access

• Following two parts are the heaviest memory 
access part in the FEM

• Matrix construction
– Search location of matrix component

– Load value from entire matrix

– Add element wise matrix

– Store to global matrix

• Matrix – vector product
– Load a row component

– Search location and load vector component 
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Strategy to access save

• Reduce the amount of memory access

• Hide memory access time behind the 
calculation

– Double buffering

• If the matrix-vector multiplication can be 
done by only with element-wise procedure, 
we avoid the global memory access.

– We only need to access quite localized memory.
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Implementation on the Cell

– Matrix construction -
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Implementation on the Cell
- Element wise matrix vector product -
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Speed up measurement

• 3-dimensional cubic analysis domain

• Descritized with 83, 163, 323, 643 elements

x

y

z

Fix to 0 @ z=0

Fix to 100 @ z=1

8,16,32,64 elements for

one edge.
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Measurement conditions

• Following four implementations are 

performed on the PowerXCell 8i processor

– Normal FEM only on PPU

– Normal FEM using SPU’s

– Access saving FEM only on PPU

– Access saving FEM using SPU’s
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Results

8^3 16^3 32^3 64^3
PPU-normal 1.78E-02 3.85E-01 9.30E+00 2.62E+02
PPU-access saving 8.09E-02 1.28E+00 2.06E+01 3.01E+02
SPU-normal 9.87E-02 1.67E+00 2.99E+01 5.63E+02
SPU-access saving 6.60E-03 9.17E-02 1.97E+00 2.90E+01

Implementation Calculation time(sec)

• Access saving FEM using SPU is the best for every problem size.

• Normal FEM only on PPU is the second best.

• Normal FEM using SPU is the worst for every problem size.

• Access saving FEM does not reduce the amount of calculation (FLOP)

• When naïve implementation is applied, using SPU’s slow down the 

performance
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Parallel efficiency measurement

• When SPU’s are used, we can observe 

the performance behavior by the change 

of FLOP / bandwidth ratio

• Following two implementations are used 

for measurement

– Normal FEM using SPU’s

– Access saving FEM using SPU’s
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Parallel efficiency 1/2
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Parallel efficiency 2/2
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Conclusions

• I introduced memory access saving FEM 
implementation, and it was implemented on the 
Cell processor

• By comparing the performance of normal FEM 
implementation and memory access saving FEM, 
following conclusion can be obtained
– Although memory access saving FEM requires much 

floating point operations than normal FEM, memory 
access saving FEM was the fastest implementation in 
this study.

– Thanks to the less memory access, parallel efficiency 
of memory access saving FEM was better than 
normal FEM.
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Fin


