
Optimization of FEM solver for heterogeneous multicore processor Cell

Noriyuki Kushida1

1 Center for Computational Science and e-system

Japan Atomic Energy Research Agency
6-9-3 Higashi-Ueno, Taito-ku, Tokyo 110-0015, JAPAN

Kushida.noriyuki@jaea.go.jp

In this study, I introduce a novel implementation method of finite element method in order to
reduce the memory access the Cell which is a kind of heterogeneous multicore processor.
Thanks to the invention of multicore processor, the computational performance per one silicon
chip is rapidly enlarging, therefore, the relative memory bandwidth, which is growing slower
than computational performance and usually limits the performance of scientific computing
code, is decreasing. The Cell, which is developed by Sony, Toshiba, and IBM, is the one of
multicore processor, and has relatively high computational performance than the other
commodity processors. In order to hide the poorness of memory bandwidth, small but high
speed memory, which is called Local store(LS), is set just under the synergetic processing
unit(SPU) in the Cell architecture. Since higher computational performance of the Cell is
obtained when the less access to the main memory is achieved, we introduced the method
which decreased the access ratio to the main memory at the expense of computational effort.
As a result, we observed better performance by comparing with ordinal finite element Poisson
solver, which run on PowerPC processing unit(PPU) of the Cell.

1

Optimization of FEM solver for

heterogeneous multicore

processor Cell

Noriyuki Kushida (JAEA)

2

Background

• Processing capacity of computer chip is still
growing by the Moor’s law
– Especially, invention of multicore processor helps

growth

• But, growth of memory bandwidth to one chip is
lesser than that of processing capacity.

• Cache memory or similar kind of feature is set in
order to increase effective memory bandwidth.
– Not effective for most scientific computing,,,

3

Objectives

• New methodology reducing the memory access, since the
relative memory bandwidth will tend to be narrow for near
future.

• Sony, Toshiba, and IBM provided novel processor chip
named Cell

• Cell is
– A kind of heterogeneous multicore processor

– Has a cache like memory whose behavior can be strictly controlled
by the programmer

• In this study, I introduced memory access saving
implementation of finite element method, and the
effectiveness was investigated by comparing the
performance of usual FEM implementation.

4

The cell processor (PowerXCell 8i)

MICMIC

Flex

IO

Flex

IO

XDR DRAM

Main

memory

External

device

PPE

SPESPE

MFC

SPU

LS

SPESPE

MFC

SPU

LS

SPESPE

MFC

SPU

LS

SPESPE

MFC

SPU

LS

SPESPE

MFC

SPU

LS

SPESPE

MFC

SPU

LS

MFC

SPU

LS

MFC

SPU

LS

SPU

LS

SPESPE

MFC

SPU

LS

SPESPE

MFC

SPU

LS

MFC

SPU

LS

MFC

SPU

LS

SPU

LS

SPESPE

MFC

SPU

LS

SPESPE

MFC

SPU

LS

MFC

SPU

LS

MFC

SPU

LS

SPU

LS

SPESPE

MFC

SPU

LS

SPESPE

MFC

SPU

LS

MFC

SPU

LS

MFC

SPU

LS

SPU

LS

SPESPE

MFC

SPU

LS

SPESPE

MFC

SPU

LS

SPESPE

MFC

SPU

LS

SPESPE

MFC

SPU

LS

SPESPE

MFC

SPU

LS

SPESPE

MFC

SPU

LS

SPU

LS

SPESPE

MFC

SPU

LS

SPESPE

MFC

SPU

LS

SPU

LS

SPESPE

MFC

SPU

LS

SPESPE

MFC

SPU

LS

SPU

LS

SPESPE

MFC

SPU

LS

SPESPE

MFC

SPU

LS

SPU

LS

L2 Cache

PPU

L1 Cache

L2 Cache

PPU

L1 Cache

PPU

L1 Cache

Element Interconnect Bus

25.6Gbyte /sec

12.8 GFLOPS * 8 =102.4GFLOPS

5

Naive FEM solver

Discritization A1 x b=

A2 x b=

An x b=

…

Element-wise

equations

Aall
x b=

Entire system

equation

Aall
x b=

Entire system

equation

Aall
Matrix –vector

product

Vector dot

product

Vector dot

product

Iterative solver

Solution!

6

Conjugate gradient

Matrix-vector multiplication

The coefficient matrix is

only required at these two

lines, and only with matrix –

vector multiplication form.

7

Memory access

• Following two parts are the heaviest memory
access part in the FEM

• Matrix construction
– Search location of matrix component

– Load value from entire matrix

– Add element wise matrix

– Store to global matrix

• Matrix – vector product
– Load a row component

– Search location and load vector component

8

Strategy to access save

• Reduce the amount of memory access

• Hide memory access time behind the
calculation

– Double buffering

• If the matrix-vector multiplication can be
done by only with element-wise procedure,
we avoid the global memory access.

– We only need to access quite localized memory.

9

Implementation on the Cell

– Matrix construction -

LS

SPU

M
a

in
m

e
m

o
ry

C
o

o
rd

in
a

te
1

E
-m

a
trix

1

C
o

o
rd

in
a

te
2

E
-m

a
trix

2

PPUPPU

Full

matrix

LS

SPU

M
a

in
m

e
m

o
ry

C
o

o
rd

in
a

te
1

E
-m

a
trix

1

C
o

o
rd

in
a

te
2

E
-m

a
trix

2

PPUPPU

Full

matrix

Calculation

with

coordinate1

Step1 Step2

LS

SPU

M
a

in
m

e
m

o
ry

C
o

o
rd

in
a

te
1

E
-m

a
trix

1

C
o

o
rd

in
a

te
2

E
-m

a
trix

2

PPUPPU

Full

matrix

LS

SPU

M
a

in
m

e
m

o
ry

C
o

o
rd

in
a

te
1

E
-m

a
trix

1

C
o

o
rd

in
a

te
2

E
-m

a
trix

2

PPUPPU

Full

matrix

Calculation

with

coordinate1

Calculation

with

coordinate2

Step3 Step4

10

Implementation on the Cell
- Element wise matrix vector product -

LS

SPU

M
a

in
m

e
m

o
ry

C
o

o
rd

in
a

te
1

E
-V

e
c
-P

1

PPUPPU

Step1

E
-V

e
c
-Q

1

C
o

o
rd

in
a

te
2

E
-V

e
c
-P

2

E
-V

e
c
-Q

2

V
e

c
to

r-Q

LS

SPU

M
a

in
m

e
m

o
ry

C
o

o
rd

in
a

te
1

E
-V

e
c
-P

1

PPUPPU

Step2

E
-V

e
c
-Q

1

C
o

o
rd

in
a

te
2

E
-V

e
c
-P

2

E
-V

e
c
-Q

2

V
e

c
to

r-Q

E-mat1

construction

LS

SPU

M
a

in
m

e
m

o
ry

C
o

o
rd

in
a

te
1

E
-V

e
c
-P

1

PPUPPU

Step3

E
-V

e
c
-Q

1

C
o

o
rd

in
a

te
2

E
-V

e
c
-P

2

E
-V

e
c
-Q

2

V
e

c
to

r-Q

LS

SPU

M
a

in
m

e
m

o
ry

C
o

o
rd

in
a

te
1

E
-V

e
c
-P

1

PPUPPU

Step4

E
-V

e
c
-Q

1

C
o

o
rd

in
a

te
2

E
-V

e
c
-P

2

E
-V

e
c
-Q

2

V
e

c
to

r-Q

E-mat2

construction

Multiply

E-mat 1 and

E-Vec-P1

11

Speed up measurement

• 3-dimensional cubic analysis domain

• Descritized with 83, 163, 323, 643 elements

x

y

z

Fix to 0 @ z=0

Fix to 100 @ z=1

8,16,32,64 elements for

one edge.

12

Measurement conditions

• Following four implementations are

performed on the PowerXCell 8i processor

– Normal FEM only on PPU

– Normal FEM using SPU’s

– Access saving FEM only on PPU

– Access saving FEM using SPU’s

13

Results

8^3 16^3 32^3 64^3
PPU-normal 1.78E-02 3.85E-01 9.30E+00 2.62E+02
PPU-access saving 8.09E-02 1.28E+00 2.06E+01 3.01E+02
SPU-normal 9.87E-02 1.67E+00 2.99E+01 5.63E+02
SPU-access saving 6.60E-03 9.17E-02 1.97E+00 2.90E+01

Implementation Calculation time(sec)

• Access saving FEM using SPU is the best for every problem size.

• Normal FEM only on PPU is the second best.

• Normal FEM using SPU is the worst for every problem size.

• Access saving FEM does not reduce the amount of calculation (FLOP)

• When naïve implementation is applied, using SPU’s slow down the

performance

14

Parallel efficiency measurement

• When SPU’s are used, we can observe

the performance behavior by the change

of FLOP / bandwidth ratio

• Following two implementations are used

for measurement

– Normal FEM using SPU’s

– Access saving FEM using SPU’s

15

Parallel efficiency 1/2

5.0x10
-3

1.0x10
-2

1.5x10
-2

2.0x10
-2

2.5x10
-2

3.0x10
-2

1 2 3 4 5 6 7 8

Normal FEM

Access saving

T
im

e
fo

r
ca

lc
u

la
ti

o
n

Number of SPU's

5.0x10
-2

1.0x10
-1

1.5x10
-1

2.0x10
-1

2.5x10
-1

3.0x10
-1

3.5x10
-1

4.0x10
-1

4.5x10
-1

1 2 3 4 5 6 7 8

Normal FEM

Access saving

T
im

e
fo

r
ca

lc
u

la
ti

o
n

Number of SPU's

83 elements 163 elements

16

Parallel efficiency 2/2

1.0x10
0

2.0x10
0

3.0x10
0

4.0x10
0

5.0x10
0

6.0x10
0

7.0x10
0

1 2 3 4 5 6 7 8

Normal FEM

Access saving

T
im

e
fo

r
ca

lc
u

la
ti

o
n

Number of SPU's

2.0x10
1

3.0x10
1

4.0x10
1

5.0x10
1

6.0x10
1

7.0x10
1

8.0x10
1

9.0x10
1

1.0x10
2

1 2 3 4 5 6 7 8

Normal FEM

Access saving

T
im

e
fo

r
ca

lc
u

la
ti

o
n

Number of SPU's

323 elements
643 elements

17

Conclusions

• I introduced memory access saving FEM
implementation, and it was implemented on the
Cell processor

• By comparing the performance of normal FEM
implementation and memory access saving FEM,
following conclusion can be obtained
– Although memory access saving FEM requires much

floating point operations than normal FEM, memory
access saving FEM was the fastest implementation in
this study.

– Thanks to the less memory access, parallel efficiency
of memory access saving FEM was better than
normal FEM.

18

Fin

