LESSONS LEARNED FROM 1-YEAR EXPERIENCE WITH SX-9 AND TOWARDS NEXT-GENERATION VECTOR COMPUTING

Hiroaki Kobayashi

Cyberscience Center Tohoku University 6-3 Aramaki-Aza-Aoba, Sendai 980-8578, JAPAN koba@isc.tohoku.ac.jp

Through my talk, I would like to share with you the 1-year experiences with SX-9, which is the latest vector system installed at Tohoku University in 2008. I will start with my talk to show you the HPC challenge benchmark results of our SX-9. The HPC challenge benchmark suit is designed for comprehensive benchmarking of high-end systems, and is more focusing on evaluation of sustained memory and network bandwidth, and sustained performance of some representative kernels such as FFT, which cannot clearly be evaluated by LINPACK (HPL) only. The SX-9 system achieved 19 top one scores out of 28 HPC challenge benchmark tests. We also discuss performance-tuning options for SX-9, especially those for an on-chip, software-controllable cache, which is newly introduced into the SX-9 vector processor to cover its limited off-chip memory bandwidth. We exploit the locality of vector data reference in differential equations and indirect memory accesses through list vectors in some leading scientific and engineering applications. Finally, I will introduce you our on-going research on design of the next-generation vector processor, in which multiple vector-cores sharing an on-chip cache are implemented. The preliminary performance evaluation of the multi-vector-core processor is also discussed.

Lessons Learned from I-year SX-9 Experience and Toward the Next Generation Vector Computing

Hiroaki Kobayashi

Director and Professor Cyberscience Center, Tohoku University <u>koba@isc.tohoku.ac.jp</u>

> 20th CCSE Workshop April 24, 2009

Hiroaki Kobayashi, Tohoku University

Agenda

- Lessons Learned from our 1-year experiences of SX-9
 - HPCC Benchmark Results
 - Tuning approaches to highly-efficient vector processing with caching
- Towards Next Generation Vector Computing
 - Multi Vector-Core Processor
- Summary

Supercomputers of Tohoku University

Single Processor Performance

SX-9 Processor Architecture

Improvement over 5 years (vs. SX-7) Vecotr Pipe x8 12 Vector Unit 11.6x Mask Reg. Logical Main Memory 4R/F 9 Vector 2.5B/F Reg. ADB 6 Scalar Unit - 3 Cache 2.9x 2x 2x Pipelines - 0 Frequency Total 102.4=40ps. x 8units x 3.2GHz 20th CCSE Workshop April 24, 2009 Hiroaki Kobayashi, Tohoku University

The HPCC benchmark consists of

24.2009

Hiroaki Kobayashi, Tohoku University

System Specifications

System name	manufacture	Processor Type	Freq.	# of Cores	# of MPI Proc	# of Threads	Peak [TF]	Interconnect Type	Network BW
SX-9	NEC	SX-9	3.2GHz	256	256	1	26.2	IXS	128GB/s
SX-9(SMP)	NEC	SX-9	3.2GHz	32	2	16	3.2	IXS	128GB/s
SX-8	NEC	SX-8	2GHz	40	40	1	0.64	IXS	16GB/s
SX-8(SMP)	NEC	SX-8	2GHz	40	5	8	0.64	IXS	16GB/s
SX-7	NEC	SX-7	0.552GHz	32	32	1	0.28256	non	non
SX-7(SMP)	NEC	SX-7	0.552GHz	32	2	16	0.28256	non	non
Idataplex	IBM-Serviware	Xeon X5472	3.0GHz	1088	1,088	1	13.5	Infiniband	2GB/s
BL2x220	НР	Xeon E5450	3.0GHz	256	256	1	3.072	Infiniband	2GB/s
SC5832	SiCortex	SiCortex Ice9	0.7GHz	5760	5,760	1	8.064	Custom	6GB/s
Blue Gene/P	IBM	PowePC450	0.85GHz	131,072	131,072	1	557	Torus	425MB/s
Blue Gene/P (SMP)	IBM	PowePC450	0.85GHz	131,072	32,768	4	557	Torus	425MB/s
XT5	CRAY	AMD Opteron	2.3GHz	149,058	74,529	2	1,381.62	Seastar	9.6GB/s
Darwin	ClusterVision/ Dell/QLogic	Xeon 5160	3GHz	256	256	1	3.072	Infiniband	2GB/s
Altix 8200EX	SGI	Xeon X5472	3GHz	1,024	1,024	1	12.288	Infiniband	2GB/s
Intel Endeavor cluster	Intel	Xeon 5160	3GHz	1,024	1,024	1	11.4688	Infiniband	2GB/s

STREAM (Averaged)

20th CCSE Workshop

Hiroaki Kobayashi, Tohoku University

April 24, 2009

Random Access (SN/EP)

G-FFT

Hiroaki Kobayashi, Tohoku University

					(<i>1</i>	13 01 2000.11.10)	
RANK	System	Institution	estitution Peak Perf. (Tflop/s)		G-FFT Results (Tflop/s)	Efficiency	
	Cray XT5	Oak Ridge National Lab.	1381.6	37544 (150176)	5.8	0.4%	
2	BlueGene/ P	Argonne National Lab.	557 ×	32768 (131072)	5.1 2.5XI	0.9% X	
3	Red/Storm/ XT3	Sandia National Lab.	25.7 124-4	12960 (25920)	2.9	2.3%	
4	SX-9	Tohoku Univ.	26.2	256 (256)	2.3	9.1%	

20th CCSE Workshop

Latency

20th CCSE Workshop

тоноки

April 24, 2009

Hiroaki Kobayashi, Tohoku University

Bandwidth

13

PingPong Performance of SX-9 IXS

• Peak: 128 GB/s in each direction

0

Hiroaki Kobayashi, Tohoku University

Discussion on Tuning Techniques for SX-9

Points for tuning

- effect of 2B/F from 4B/F
 - be aware of high-vector processing rate, relatively lower memory bandwidth
 - increase computations and reduce memory operations as many as possible
- effect of 256KB ADB
 - figure out temporal locality of vector data reference

Applications examined

- Earthquake
 - Simulation of seismic slow slip model
- Turbulent flow
 - Direct numerical simulation of turbulent channel flow
- Antenna
 - FDTD simulation of lens antenna using Fourier transform
- Land Mine
 - FDTD simulation of array antenna ground penetrating radar for land mine detection
- Turbine
 - Direct numerical simulation of unsteady flow through turbine channels for hydroelectric generators
- Plasma
 - Simulation of upper hybrid wave in plasma using Lax-Wendroff method

20th CCSE Workshop

Hiroaki Kobayashi, Tohoku University

Tuning Options for Efficient Vector Processing with On-Chip Caching on SX-9

Selective Caching

increasing opportunities of cache hits of data with higher temporal locality

Cache Blocking

- k increasing cache hit rates to avoid capacity misses
- k decreasing vector length

Loop Unrolling/Loop Fusion

- k increasing arithmetic density/vector length in loop body
- k decreasing the branch overhead
- increasing the temporal locality of data by removing duplicated vector loads across nested loops
 - \checkmark now more sensitive to SX-9 performance due to its limited memory BW
- increasing the possibility of register spill and/or eviction from the cache if their capacities are not enough, because the data should be available on the chip for a long time
 - \star this also give a pressure to the memory system, especially 2.5B/F of SX-9

Selective Caching & Blocking (Case 1)

Hiroaki Kobayashi, Tohoku University

Selective Caching & Blocking (Case 2)

Selective Caching for Difference Equation Code (Case 3)

20th CCSE Workshop

Hiroaki Kobayashi, Tohoku University

Selective Caching and Blocking: Tradeoff between Vector Length and Cache Hit Rate

128 256 750 Size of j (Vectorized Loop Size) 256KB ADB

1MB ADB (simulated)

Effects of Loop Unrolling on ADB (Case 1)

Earthquake

16-Node Performance in CFD

Comparison with a TX-7 scalar system						
	TX7(lt	anium)	SX-9			
Cores	1	64	1	16	256	
Peak	6.4GF	409.GF	102.G	1.6TF	26TF	
Perf.	(1x)	(64x)	(16x)	(256x)	(4096x)	
Sustained Speedup	1x	36x	21x	316x	3460x	
20th CCSE Workshop 25						

Started with a scalar-tuned code for TX-7/i9610
Almost 99.9 % vector performance was achieved.
0.2 billion cells were solved by present method.
Flat MPI shows better parallel efficiency than hybrid.
161x speedup obtained on the 16 nodes with 256 CPUs

⁶9 hours on 16 nodes (256 CPU) of SX-9

тоноки

36 days on one TX-7 node with 64 itanium cores

Towards Next Generation Vector Computing

NEC

Disclaimer: Information provided in this talk does not reflect any future design of the NEC systems.

SX Performance Trend

Hiroaki Kobayashi, Tohoku University

Design Choices for the Next Vector Processor

- / increasing flop/s rate
- SMP on a chip
- Limited Memory Bandwidth
 - decreasing B/F rate per core
- ✤ Large on-chip cache
 - decreasing off-chip memory access
 - ✓ decreasing IO driving power
 - private
 - exclusive, no conflict
 - 🗸 fast
 - k limited capacity
 - Shared
 - ✓ large
 - effective for shared data in SMT
 access conflicts
 limited B/F rate
 - distributed shared
 - multi-level
 - / 1st-level fast private
 - / 2nd-level large shared

Centralized (Shared)

Toward a Multi Vector Core Processor!

A.Musa, Y.Sato, T.Soga, R. Egawa, H. Takizawa, H. Kobayashi, "Caching for A Chip Multi Vector Processor," presented at SC08, 2008.

20th CCSE Workshop

29

April 24, 2009

Hiroaki Kobayashi, Tohoku University

тоноки

Prefetching Effects of the On-chip Shared Vector Cache in Multithreading of the Difference Scheme

FDTD kernel

DO 10 k=0,Nz ; DO 10 i=0,Nx; DO 10 j=0,Ny

$$E_x(i,j,k) = C_x_a(i,j,k) * E_x(i,j,k)$$

& + C_x_b(i,j,k) * ((H_z(i,j,k) - H_z(i,j-1,k))/dy
inter-thread locality
(H_y(i,j,k) - H_y(i,j,k-1))/dz - E_x_Current(i,j,k))
 $E_z(i,j,k) = C_z_a(i,j,k) * E_z(i,j,k)$ intra-thread locality
& + C_z_b(i,j,k) * ((H_y(i,j,k)-H_y(i-1,j,k))/dx
& - (H_x(i,j,k)-H_x(i,j-1,k))/dy - E_z_Current(i,j,k))
 $E_y(i,j,k) = C_y_a(i,j,k) * E_y(i,j,k)$ inter-thread locality
& + C_y_b(i,j,k) * ((H_x(i,j,k) - H_x(i,j,k-1))/dz
& - (H_z(i,j,k) - H_z(i-1,j,k))/dx - E_y_Current(i,j,k))
10 CONTINU intra-thread locality

A.Musa, Y.Sato, T.Soga, R. Egawa, H. Takizawa, H. Kobayashi, 20th CCSE Workshop for A Chip Multi Vector Processor," presented at SC08, 2008. 30 April 24, 2009

Thread Mapping of Difference Code on Cores

DO 10 k=0,Nz DO 10 i=0,Ny DO 10 j=0,Nx $\sim = \sim (H_y(i,j,k) - H_y(i,j,k-1)) \sim$

10 CONTINUE

DO 10 k=0,Nz,4 DO 10 j=0,Ny Core 0	DO 10 k=1,Nz,4 DO 10 j=0,Ny Core 1
DO 10 i=0,Nx	DO 10 i=0,Nx
\sim = \sim (H_y(i,j,k) - H_y(i,j,k-1)) \sim	$\sim = \sim (H_y(i,j,k) - H_y(i,j,k-1)) \sim$
10 CONTINUE	10 CONTINUE
DO 10 k=2,Nz,4 DO 10 j=0,Ny Core 2	DO 10 k=3,Nz,4 DO 10 j=0,Ny Core 3
DO 10 i=0,Nx	DO 10 i=0,Nx
$\sim = \sim (H_y(i,j,k) - H_y(i,j,k-1)) \sim$	\sim = \sim (H_y(i,j,k) - H_y(i,j,k-1)) \sim
$\sim = \sim (H_y(i,i,k) - H_y(i,j,k-1)) \sim$ 10 CONTINUE	$\sim = \sim (H_y(i,j,k) - H_y(i,j,k-1)) \sim$ 10 CONTINUE

Hiroaki Kobayashi, Tohoku University

Cache Behavior on Cores

1 24, 2009

Performance of Multi Vector-Cores with the Shared Cache

тоноки

Hiroaki Kobayashi, Tohoku University

Prefetching Effects of the On-chip Shared Vector Cache in Multithreading

A.Musa, Y.Sato, T.Soga, R. Egawa, H. Takizawa, H. Kobayashi, 20th CCSE Workshop for A Chip Multi Vector Processor," presented at SC08, 2008. 34 April 24, 2009

Lessons learned from SX-9 Experiences and Towards the Next-Generation Vector Computing

Great potentials of SX-9

- Powerful tool for "Short Time to Innovations" in computational science
 19 top one scores on 28 HPCC benchmark tests:
- The first on-chip cache mechanism for the SX architecture works well!
 - * Definitely covers the lack of off-chip memory bandwidth, but...
 - **more capacity**, **more sophisticated data management needed**
- Towards the Next-Generation Vector Computing
 - **Wirtualization** of distributed vector computing resources
 - Multicore desing of the vector architecture
 - Research challenges
 - * Hardware/software-controlled optimizations for on-chip data handling needed
 - * Tradeoff between loop-unrolling & selective caching with prefetching, outstanding load handling on miss
 - New memory hierarchy design for a multicore era of the vector architecture under the consideration of power consumption and sustained performance

Hiroaki Kobayashi, Tohoku University

Acknowledgements

- Tohoku University
- Koki Okabe
- Ryusuke Egawa
- Hiroyuki Takizawa
- Ei-ichi Ito
- Kenji Oizumi
- Other colleagues and students of the project

- NEC
- Akihiko Musa
- Takashi Soga
- Youichi Shimomura
- Yoko Isobe
- Tatsunobu Kokubo
- Naoyuki Sogo
- Masaaki Yamagata
- Other NEC Engineers involved in SX R&D

Disclaimer:Information provided in this talk does not reflect any future design of the NEC systems.