High performance eigenvalue solver in the emerging petascale computing era

Toshiyuki Imamura The University of Electro-Communications 1-5-1 Choufugaoka, Chofu-shi, Tokyo 182-8585 <u>imamura@im.uec.ac.jp</u>

Facing on the emerging petascale computing era, we need much more knowledge combining hardware and software, in order to achieve higher performance on a large scale parallel system. More than thousand cores should be used on a parallel program, and they play a role on a hierarchical complex parallel program, for example, written in MPI, OpenMP, SIMD directives etc.. We have to examine the existing algorithms whether they have higher parallelism, and whether they work effectively with more than ten thousand cores.

In this talk, focusing on a case study of large-scale eigenvalue computation on such as the Earth Simulator and a T2K supercomputer system, the author would like to present some perspectives on large-scale parallel computing towards the next generation Peta-scale computer.

High performance eigenvalue solver in the emerging petascale computing era

Toshiyuki Imamura The University of Electro-Communications, Japan

Thanks to M. Machida and S. Yamada (JAEA), and Auto-tuning research group

CCSE Workshop

April 24, 2009

Outline Review 1. Numerical algorithm for eigenvalue problems 2. Current eigensolver performance On a Large scale system On a single multicore PC 3. Problem on Householder tridiagonalization Approach via Narrow-band reduction 4. Performance on a single socket Parallel Performance on T2K Perspectives 5. Conclusion April 24, 2009 CCSE Workshop

1.3, Iterative method

- Krylov subspace method
 - Exploring $V := \{x, Ax, A^2x, ...\}$ to find the min or max of y^TAy , where y is chosen from the spanned space with $V \rightarrow$ to find the min/max mode of V^TAV .
 - Lanczos method

Non- sym.	Pre- cond.	Block- ing	Stability
	×		×
		×	
×			

- Jacobi-Davidson method
- Conjugate Gradient method
- Newton method is also available. (sort of inverse power-iteration method)

1.5, Result at the Gordon Bell Finalist Session, SC05 and 06

Problem & Dimension of Hamiltonian matrices

Model	Nb. of	No.of ↑-spin	Fermions ↓-spin	Dim of H	No. of Nodes	Memory Lanczos	/ (TB) POG
1	24	6	6	18. 116. 083. 216	128	0.8	1.3
2	21	8	8	41.408.180.100	256	1.9	2.9
3	22	8	8	102 252 852 900	512	4.6	6.9

Focusing on DRSM (Dense-Real-Symmetric-Matrices) diagonalization **MULTICORE AND MULTIPROCESSOR** PERFORMANCE

2.1 How fast does a parallel eigensolver perform on ES with a huge problem?

CCSE Workshop

Matrix dim.: 280,000~375,000

Earth Simulator: 4,096 VPU's

Memory: 2~3 T Bytes

We confirmed stability of the solver up to 375,000 X 375,000 Accuracy is pretty excellent up to 300K X 300K (confirmed)

April 24, 2009

2.2' Performance on a Multicore mutliprocessors (T2K 64nodes, 1024cores)

2.3 Motivation of My talk: We are now on the multicore age

We need a high performance and scalable eigenvalue solver on from tera-scale to petascale computers. Furthermore, beyond them, Hexa-scale computing environment....

What is the significant drawback? POOR (not rich) memory bandwidth.

- Performance bound
- Conflict on memory access with multicores

CCSE Workshop

- Cache consistency problem
- Deep memory hierarchy

2.4 Our approach towards a peta-scale computer

- Blocking strategy
 - Single vector ops. \rightarrow Multiple vectors ops.
 - Displace Level 2 BLAS \rightarrow Level 3 BLAS.
 - Message aggregation \rightarrow less data comms.
 - Multi-dimensional data division
 - \rightarrow multithreading with thousands of cores.
- However, we need algorithm change.
 - Drastically, and

April 24, 2009

Question: Strategy to replace "L2 BLAS" to "L2.5 or 3 BLAS", does it truly perform well? SINGLE MULTICORE PERFORMANCE !

3.1, Householder narrow-bandreduction

3.2, Xeon: scalability check

Total performance; GFLOPS rate in Narrow-band reduction routine

Parallel Performance Narrow-band reduction (k=1)

k=1, equivalent to tridiagonalization

N= 10000 NM= NUM.OF.PROCESS= NUM.OF.THREADS= calc (u,beta) 1143 mat-vec (Au) 73.0 2update (A-uv-vu) 7.7	5008 4 (4 459320068 448567867 152607440	2 9 36 1279 19485	2) 9.12681187962571 86.4088316363026	
calc v 1.03407 v=v-(UV+VU)u 3.9	7597541809 979163408	9 27942		
UV post reduction 1.0 COMM_STAT	458767414	0930		
BCAST 0.902075	290679932	<u>)</u>		
REDIST :: 0.000000	000000000	DE+000		
TRD-BLK 10000	724990844 88.716572	9999542	15.0291347856056	GFLOF

T2K supercom at U.Tokyo, single node(Theoretical Peak 147GFLOPS)

CCSE Workshop

Parallel Performance Narrow-band reduction (k=4)

k=4, bandwidth=9

N= 10000 NM= 5008 NUM.OF.PROCESS= 4 (2 2) NUM.OF.THREADS= 4
calc (u,beta) 1.39939284324646
mat-vec (Au) 22.5483167171478 29.5661390173605
2update (A-uv-vu) 7.93256497383118 84.0417530604465
calc v 0.835858106613159
v=v-(UV+VU)u 1.24786186218262
UV post reduction 0.303748607635498
COMM_STAT
BCAST 0.902456998825043 munication cost decreases slightly
REDUCE :: 2.19763445854187
(REDIST :: 0.000000000000000000000000000000000
GATHER :: 0.429951906204224
TRD-BLK 10000 34.9330039024353 38.1682988688065 GFLO

T2K supercom at U.Tokyo, single node(Theoretical Peak 147GFLOPS)

CCSE Workshop

3.4, Parallel Performance

3.5, Discussion

3.6, From the Latest large experiment, tri-diagonalization (k=1)

NUM.OF.PROCESS=	4096 (64	64)
calc (u,beta) 465	1430423259	73511	
mat-vec (Au) <u>60</u>	92.16216659	545898	1835.93449432374246
COMM1/2 78	31.987825393	8676758	730.568418025970459
2update (A-uv-vu)	614.6002881	52694702	18198.5119146053039
calc v 187.2	5508975982	5660	
v=v-(UV+VU)u	428.3456773	75793457	
UV post reduction 1	.2936789989	4714355	
COMM_STAT			
BCAST :: 535.07	78449249267	578	
REDUCE :: 1960.	9537136554	7180	
REDIST :: 0.0000	000000000000000	0000E+000	
GATHER :: 62.25	0141143798	8281	
TRD-BLK 256000	7799.5352	<u>20894050598</u>	<u>2868.07107527270637</u>
PE partition =	64 64		
Split ROW/COLUMN I	DONE		
D&C 259.87033987	0452881	ERRCODE=	0
T2K supercom at U.Tokyo, 256nodes(Theoretical Peak 37.6TFLOPS)			

rkshop

3.7, Perspectives

- Householder tridiagonalization for a 25.6K dimensional matrix:
 - 7,799 [sec] on T2K 256 nodes (4096cores)
 6,092 [sec] is Level2 (P)BLAS
 - If k=2, 30-40% improvement is expected. 2K-2.4K[sec] could be saved.→4~TFLOPS
 - If k=3~5, 40-60% improvement is expected.
 2.4K-3.6K[sec] could be saved.→5.5~TFLOPS
 - → The approach will be acceptable (we can expect the performance beyond 15% of the peak).
 - → If 10PFLOPS machine is available, sustained performance will reach PFLOPS order.
 - Untouched issue in this study is the cost of eigenpair computation for band matrices...

CCSE Workshop

Question: How faster does Narrow-Band reduction perform IT on a large scale system? We need a bright perspective towards a Petascale machine.

CAN WE TRUST ON IT ? YES!

April 24, 2009

4. Conclusion

- 1. Iterative method for Sparse matrices
 - Outstanding LOBPCG performance in SC|06
 - Beyond 100billion DOF
 - 24TFLOPS on Earth Simulator

2. DRSM issues

April 24, 2009

- Algorithm should be replaced into a block version.
 - In our case Narrow-band reduction is an inevitable approach to diagonalize a dense matrix.
- Level3 BLAS, matrix-matrix product, provides us relatively higher performance.
 - It takes account of the power of multiple cores.
- We can expect peta-FLOPS performance on a tenpeta scale computer system!!

CCSE Workshop

Any question ? THANK YOU FOR YOUR PATIENT!