分析と総合 - 耐震設計を例として -

秋山宏

東京大学名誉教授

〒152-0012 東京都目黒区洗足 2-2-5

1. 耐震設計における総合的認識の重要性

新潟県中越沖地震(2007年7月16日)は間近の東京電力(株)柏崎刈羽原子力発電所の設計用地震動をはるかに越える地震動を もたらした。しかし、幸いなことに発電所は重大な事故に至らなかった。その理由の一つは原子炉施設に適用される設計手法の 保守性にある。原子炉施設の震害経験は殆んど皆無であったが、一般建築の震害経験は実に豊富である。原子力発電所耐震設計 審査指針には、高度な解析による地震時の応力評価と並んで、通常建物の3倍の静的地震力を用いた許容応力度設計が義務付け られている。このような経験に基づく耐震余裕度の確保による地震動の不確定性に対処することが可能となったと考えることが できる。

2. 分析と総合

構造設計一般において必須の思考過程は分析と総合である。設計に関わる情報を全体像にまとめ上げるのが総合の過程であり、 この過程により設計目的、全体的枠組が決定される。一方、構造細部の目的、全体的枠組への適合性を証明する過程が分析過程 である。電子計算機の発達により、解析手法は飛躍的進歩を遂げた。その結果、設計条件の多様化に対応した詳細な分析結果を 得ることが可能となった。反面、1 点の情報は精緻を極めても、設計条件の変化に対する全体挙動の変化の様相は増々見えにく くなる傾向にある。構造が主として弾性に限られていた時代は、微分方程式を積分した閉解を求めることができ、パラメータと 現象との対応が直接表現されていた。即ち、分析過程の中に総合過程が含まれていた。しかし、構造の非線形挙動が重視される ようになると、数値解析以外の閉解を得ることが困難となり、解析手段は一辺倒に偏るようになった。ここに分析過程において も総合化の視点が強く求められる理由がある。

3. 耐震設計における分析と総合

地震下の構造物の挙動を明らかにするには運動方程式たる微分方程式の数値積分が欠かすことはできない。この瞬時の力の釣合を表現する微分方程式も多様な条件に対処する為に増々精緻化が進み、解析結果は特殊化し応答の全体像の総合的認識を拒み つつある。

一方、力の釣合方程式の両辺に構造物の応答変形の微小増分を乗じ、これを地震動継続時間t₀で積分すれば、エネルギーの 釣合式を得る。このエネルギーの釣合式によって、構造物全体のエネルギー授受の実態を捉えることができ、運動方程式の数値 解が離散的情報を与えるのに対し積分的な総合情報をもたらすことになる。

4. 総エネルギー入力の一定性

地震動により構造物に投入されるエネルギーの総量(総エネルギー入力)は構造物の非線形性が増すにつれて安定化し、構造物の設計法によらない一定値とみなせることが明らかとなっている。即ち、地震により構造物に投入される総エネルギー入力は 構造物の総質量と一次固有周期のみに依存する一定値とみなせる。

5. 損傷集中

総エネルギー入力が一定であることから、耐震設計における最大の課題は構造各部への塑性歪エネルギー分布(損傷分布)を いかに制御するかに帰着する。損傷は局部に集中し易く、損傷集中に対処することが耐震設計であると云える。

P−δ 効果

構造物は重力場で一定のポテンシャルエネルギーを保持している。水平地震動下で構造物が水平変形を生ずると、構造物は鉛 直方向へ沈下する。これに伴ってポテンシャルエネルギーの一部は解放される。従って構造物は地震によるエネルギーに加えて ポテンシャルエネルギーの解放分を吸収しなければならない。これが $P - \delta$ 効果であり構造物を倒壊、崩壊に至らしめる要因 として重視しなければならない。

7. 構造形式の認識

構造物は一般に、弾性に留まる柔要素と弾塑性挙動する剛要素から成る混合構造として認識することができる。通常の構造は 剛要素からなる単一構造で、柔要素を意図的に加えることによって柔剛混合構造が構成される。柔剛混合構造の長所は*P* – δ 効 果の影響を受けないことと剛要素のエネルギー吸収効率が格段に大きいことにある。エネルギーの分布に着目して、構造形式は 次のように大別できる。

- ・ 非柔剛混合構造 : 通常の構造
- · 損傷集中型柔剛混合構造:免震構造
- · 損傷分散型柔剛混合構造:制振構造

建物・構築物耐震設計の現状と展望

秋山 宏

東京大学名誉教授

1.はじめに

最近では大地震の記録の数も多くなってきたが、その数は依然として限られてい る。新たな地震が起こる度に新たな事実が明らかとなる。1地点の起こるべき地震 動を的確に予測することは不可能に近い。一方では、耐震設計は恰も地震動が確定 したものとして進められる。新潟県中越沖地震(2007年7月16日)は、間近の東京 電力(株)柏崎刈羽原子力発電所の設計用地震動をはるかに超える地震動をもたらし た。しかし、幸いなことに発電所は重大な事故には至らなかった。何故そうであっ たのかを解明することは今後の耐震設計の進歩の為に極めて重要である。本論は通 常の建築構造物を対象として、建物の強度レベル、変形レベルと地震入力レベルの 相関性を群としてとらえることにより、建築物の耐震性の真の様相を明らかにする ^{1).2).3)}。同一の建物に対して、地震入力レベルが低ければ建物に生ずる変形は小さく て済む。より大きい入力に対しては変形は大きくなる。従って、許容変形の幅を大 きく採ることができれば、建物は地震入力の不確定性にも耐えることができること になる。対象建物はラーメン構造とする。

2.多層ラーメン構造の耐震性評価式(P-δ効果を無視した場合)^{1),2)}
 多層骨組の地震時のエネルギーの釣合式は次式で与えられる。

$$W_e + W_p + W_h = E = \frac{MV_E^2}{2}$$
(1)

ここで、*W_a*:弾性振動エネルギー

- W_p :累積塑性歪エネルギー
- W_h :減衰により吸収されるエネルギー
- E:総エネルギー入力
- V_E:総エネルギー入力の速度換算値
- M : 総質量

(1)式は次の様に変形できる。

$$W_e + W_p = \frac{MV_E^2}{2} \frac{1}{\left(1 + 3h + 1.2\sqrt{h}\right)^2}$$
(2)

ここで、*h*:減衰定数

 W_e は次式で近似できる。

$$W_{e} = \frac{Mg^{2}T^{2}}{4\pi^{2}} \cdot \frac{\alpha_{1}^{2}}{2}$$
(3)

ここで、*g*:重力加速度

T:1次固有周期

 $lpha_{
m l}$:第1層の降伏せん断力係数

 W_p は次式のように書ける。

$$W_p = \gamma_1 W_{p1} \tag{4}$$

ここで、 γ_1 :第1層の損傷分散係数

 W_{p1} :第1層の累積塑性歪エネルギー γ_1 は次式で表せる。

$$\gamma_{1} = \frac{W_{p}}{W_{p1}} = \frac{\sum_{i} s_{i} p_{i}^{-n}}{s_{1} p_{1}^{-n}}$$

$$(5)$$

$$\Box \Box \Box \nabla, s_{i} = \left(\sum_{j=i}^{N} \frac{m_{j}}{M}\right)^{2} \overline{\alpha_{i}^{2}} \frac{k_{1}}{k_{i}}$$

$$p_{i} = \frac{\alpha_{i}}{\alpha_{1}} / \overline{\alpha_{i}}$$

$$n : Iggstringth{gstringthgstringth{gstringth{gstringth{gstr}hit n}$$

ここで、 δ_{y_i} : *i* 層の降伏層間変形

標準的な骨組に対して次式が近似的に成り立つ。

$$\sum_{i} s_i = 0.36 + 0.64N \tag{9}$$

従って、(7)式は次式に帰着する。

$$\gamma_1 = 1 + 0.64(N - 1)p_d^{-n} \tag{10}$$

復元力特性が図1に示す完全弾塑性型の場合、W_nは次式で表せる。

$$W_{p1} = \frac{Mg^2 T^2}{4\pi^2} \cdot \frac{\alpha_1^2 \gamma_1 \eta_1}{\kappa_1}$$
(11)

ここで、 $\kappa_1 = k_1/k_{eq}$ η_1 :第1層の累積塑性変形倍率 $k_{eq} = \frac{4\pi^2 M}{T^2}$:等価バネ定数 η_1 は第1層の塑性変形倍率 μ_1 (図1参照) た用いて次式で表される

$$\eta_1 = a_d \,\mu_1 \tag{12}$$

標準的な骨組では κ_1 は次式で近似できる。

$$\kappa_1 = 0.48 + 0.52N \tag{13}$$

(3)、(4)式を(2)式に代入すれば次式が得られる。

図 1 完全弾塑性型復元力特性

 $\frac{Mg^2T^2}{4\pi^2}\alpha_1^2\left(\frac{1}{2} + \frac{a_d\,\mu_1\gamma_1}{\kappa_1}\right) = \frac{MV_E^2}{2}\frac{1}{\left(1 + 3h + 1.2\sqrt{h}\right)^2} \tag{14}$

(14) 式より次式が得られる。

$$\alpha_{1} = \frac{1}{\sqrt{1 + \frac{2a_{d}\,\mu_{1}\gamma_{1}}{\kappa_{1}}}} \frac{2\pi}{gT} \frac{V_{E}}{\left(1 + 3h + 1.2\sqrt{h}\right)}$$
(15)

次に、エネルギースペクトルの形態として 図 2 に示すものを想定する。即ち、

ここで、 T_G :限界周期

 $V_{Em}: V_E$ の最大値

(15) 式を(16) 式の各線分に適用すれば、

2つの $\alpha_1(\alpha_1, \alpha_1)$ が求まる。

$$T \leq T_{G} \mathcal{O}$$
与合 $\alpha_{1} = \alpha_{1} = \frac{1}{\sqrt{1 + \frac{2a_{d} \mu_{1} \gamma_{1}}{\kappa_{1}}}} \cdot \frac{2\pi}{gT_{G}} \frac{V_{Em}}{(1 + 3h + 1.2\sqrt{h})}$

$$T > T_{G} \mathcal{O}$$
与合 $\alpha_{1} = \alpha_{1} = \frac{1}{\sqrt{1 + \frac{2a_{d} \mu_{1} \gamma_{1}}{\kappa_{1}}}} \cdot \frac{2\pi}{gT} \frac{V_{Em}}{(1 + 3h + 1.2\sqrt{h})}$

$$(17)$$

但し、(17)式の第2式中のTは次式で表される。

$$T = 2\pi \sqrt{\frac{M}{k_e}} = 2\pi \sqrt{\frac{\delta_Y \kappa_1}{\alpha_1 g}}$$
(18)

(18) 式を(17) 式の第2式へ代入して α_1 について解けば次式が得られる。

$${}_{2}\alpha_{1} = \frac{1}{\kappa_{1} + 2a_{d}\,\mu_{1}\gamma_{1}} \cdot \frac{V_{Em}^{2}}{\delta_{Y}g} \frac{1}{\left(1 + 3h + 1.2\sqrt{h}\right)^{2}}$$
(19)

真の α_1 は次式によって与えられる。

$$\alpha_1 = Min\{\alpha_1, \alpha_2, \alpha_1\}$$
(20)

Η

3. 多層ラーメン構造の耐震性評価式(P-δ効果を考慮した場合)⁴⁾

図3に示す骨組第1層における $P-\delta$ 効果 は水平加力下の層間変位 δ_1 と層に加わる総 重量Wによってもたらされる付加せん断力 ΔQ としてとらえることができる。 ΔQ は柱 頭、柱脚をピン支持とすれば次の値となる。

$$\Delta Q = -\frac{W\delta_1}{H} = k_{P\delta_1}\delta_1 \tag{21}$$

ここで、*H* : 階高 、 *W* : 総重量

 $k_{P\delta1}$: $P - \delta$ 効果による負のバネ定数 第 1 層のバネ定数 k_1 に対する $k_{P\delta1}$ の比率 $k'_{P\delta1}$ は 次式で表される。

$$k'_{P\delta 1} = \frac{k_{P\delta 1}}{k_1} = -\frac{\theta_{Y1}}{\alpha_1}$$
(22)

ここで、 $heta_{Y_1} = rac{\delta_Y}{H}$:第1層の降伏変形角

第 1 層の単調加力下の荷重変形関係は*P*-δ効果の有無により図4に示す様に変化する。0 - A - B

が $P-\delta$ 効果が無い場合で、0 - A' - Uが $P-\delta$ 効果がある場合である。 $P-\delta$ 効果の下では変形が一方向に偏り、図4中の 0 A'Uで示される面積によりエネルギー吸収量が限界づけられるとすれば、第1層のエネルギー吸収量の上限値 $_{u}W_{p1}$ は次の値となる。

$$_{u}W_{p1} = \frac{Q_{Y}\delta_{Y}(1 - |k'_{P\delta 1}|)}{2|k'_{P\delta 1}|}$$
(23)

従って、 $P-\delta$ 効果によって限界づけられる第1層の累積塑性変形倍率 η_u は次の値となる。

$$\eta_{u1} = \frac{1 - |k'_{P\delta 1}|}{2|k'_{P\delta 1}|} \tag{24}$$

また、 $P-\delta$ 効果により、一般に第1層のエネルギー吸収量は次式で示される様に 減少する。

$$\frac{W_{p1}}{{}_{u}W_{p1}} = 0.367 \left| k'_{P\delta 1} \right|^{-0.2}$$
(25)

(22)式より、(25)式は次式のように表現できる。

$$\frac{W_{p1}}{{}_{u}W_{p1}} = 0.367\theta_{Y}^{-0.2}\alpha_{1}^{0.2}$$
(26)

(26)式のエネルギー吸収低下率が(2)式の W_p のみならず W_e にも及ぶものと仮定 すれば、 $P-\delta$ 効果を考慮した場合のエネルギーの釣合式は(14)式に代えて次式とな る。

$$\frac{Mg^2T^2}{4\pi^2}\alpha_1^{2.2} \cdot 0.367\theta_Y^{-0.2} \left(\frac{1}{2} + \frac{a_d\,\mu_1\gamma_1}{\kappa_1}\right) = \frac{MV_E^2}{2} \frac{1}{\left(1 + 3h + 1.2\sqrt{h}\right)^2}$$
(27)

(27)式を適用することにより、 $P-\delta$ 効果を考慮した場合の $_1\alpha_1$, $_2\alpha_1$ は次の値となる。

$${}_{1}\alpha_{1}' = \left({}_{1}\alpha_{1} \cdot \frac{\theta_{Y}^{0.1}}{\sqrt{0.367}} \right)^{\frac{1}{1.1}}$$

$${}_{2}\alpha_{1}' = \left({}_{2}\alpha_{1} \cdot \frac{\theta_{Y}^{0.2}}{0.367} \right)^{\frac{1}{1.2}}$$

$$(28)$$

ここで、 $_{1}\alpha'_{1}$: $P-\delta$ 効果を考慮した場合の $_{1}\alpha_{1}$

- $_{2}\alpha'_{1}$: *P*- δ 効果を考慮した場合の $_{2}\alpha_{1}$
- $_{1}\alpha_{1}$: $P-\delta$ 効果を無視した場合の $_{1}\alpha_{1}$
- $_{2}\alpha_{1}$: *P*- δ 効果を無視した場合の $_{2}\alpha_{1}$

最終的に $P-\delta$ 効果を考慮して得られる α_1 は次式により定まる。

$$\alpha_1 = Min\{1\alpha'_1, 2\alpha'_1\}$$
⁽²⁹⁾

4. 有効周期 5)

地震入力を評価する(16)式の第1式において、Tは建物の1次固有周期を用いた が、実際には有効周期を用いるべきである。有効周期は形式的に次式のように書け る。

$$T_e = \frac{T_o + T_m}{2} = aT \tag{30}$$

ここで、 T_e :有効周期 、 T_m :最長周期 、 a:周期の修正係数

1 層骨組の場合、 *a* の値は復元力特性に従って定まる。 *T_m* は塑性化による最長周期で一般には図 5 に示される割線剛性に対応する周期 *T_s* に修正係数を乗じて表現される。

$$T_m = a_T T_s$$

復元力特性の第 2 勾配が δ 軸に平行な場合 T_s は次の値となる。

$$T_s = \sqrt{1 + \mu} T_o \tag{32}$$

aの値は次の値に帰着する。

$$a = \frac{1 + a_T \sqrt{1 + \mu}}{2} \tag{33}$$

多層骨組の場合には μ の値として μ_i の平均 値を用いることができ、 μ_i の平均値 $\overline{\mu}_i$ は次式 で与えられる。

$$\mu = \overline{\mu}_i = \frac{\mu_1 \gamma_1}{\sum_i s_i}$$

5. 例題

例題として鋼構造ラーメン構造、鉄 筋コンクリート造ラーメン構造をとり あげる。地震入力としては図 6 に示す 広範なエネルギースペクトルをとり上 げる。図 6 に示すエネルギースペクト ルは兵庫県南部地震の記録、長周期地 震動に対する最近の予測波を概ね包絡 するものとして設定されている。ロー マ数字 ~ は地震入力のレベルを表 す。

鋼構造、鉄筋コンクリート構造の概 要は表1に示してある。復元力特性は

(31)

1 ループに相当するものが図 7 に示してある。鋼構造は完全弾塑性型と見なし、 a_d の 値は 4.0 を採ることができる。鉄筋コンクリート構造の場合、0 - A間は直線としコ ンクリートの曲げ亀裂発生に伴うエネルギー吸収を無視した。この為に減衰定数は 0.05 としている。また、履歴ループはC点に到達した後 B 点を指向するものである が、A 点を向かうもので近似し、 a_d の値 (η/μ)は 3.0 とした。両構造共に梁降伏 型とし、 δ_Y 、 H は共通の値を用いた。地震入力が増大すれば塑性変形は増大する。 α_1 が同一であれば(19)式に従えば $\mu_1 \ge V_E^2$ はほぼ比例すると考えられる。このことか ら、 μ_1 の設定値は V_{Em}^2 に比例的に設定した。 μ_1 の設定値は次式で表せるものを採用 した。

 $\mu_1 = \mu_0 N^{-0.2}$

(35)

 μ_0 の値は V_{Em}^2 にほぼ比例する値として表 2 に示す値とする。

	鋼構造	鉄筋コンクリート構造			
h	0.02	0.05			
a_d	4.0	3.0			
a_T	$\left(1+\frac{\mu}{8}\right) / \sqrt{1+\mu}$	1.0			
а	$1 + \frac{\mu}{16}$	$\frac{1+\sqrt{1+\mu}}{2}$			
δ_{Y} (cm)	2	2.5			
H (cm)	400				

表1 構造概要

図7 復元力特性

表 2 地震入力レベルと μ_0 の対応

μ_0	1.5	2.5	4.0	6.0	8.0

建物の階数が増すと建物の重要性は増すと考えることができる。その理由は次の ようなものである。

- 1) 1棟の被害の総量が大きくなる
- 2) 周辺に与える被害の波及効果が増大する
- 3) 被害の修復が困難になる
- 4) *P*-δ効果の影響が大きくなる

この様な理由で、Nが増大するにつれて損傷度を低減させることは安全率を高める上で有効であり、(35)式に示す様に、Nの増大が μ_1 の設定値を減少させる関数を採用する。建物の第 1 層の残留変形 δ_r は次式で近似的に表せる²⁾。

$$\delta_r = \frac{\delta_{pm1}}{2} = \frac{\delta_Y \mu_1}{2} \tag{36}$$

ここで、 δ_{pm1} :第1層の最大層間変形

図8には(35)式のµ₁の設定に対応した残留変形とNとの関係を示す。

(29) 式による得られた第1層の降伏せん断力係数は図9に示されている。

 $P-\delta$ 効果により限界づけられる η_1 は(24)式で与えられる。この値を最大塑性変形 倍率に換算した値 $\overline{\mu}_u$ は次式で与えられる。

$$\overline{\mu}_{u} = \frac{\eta_{u}}{a_{d}} = \frac{1 - |k'_{P\delta}|}{2a_{d}|k'_{P\delta}|}$$
(37)

 $- \Re |k'_{P\delta}| \le 0.1$ となり、(27)式は安全側に次式で近似できる。

$$\overline{\mu}_{u} = \frac{0.9}{2a_{d} |k'_{P\delta}|} = \frac{0.9}{2a_{d}} \frac{\alpha_{1}}{\theta_{Y1}}$$
(38)

図9に示される α_1 を(37)式に代入して得られる $\overline{\mu}_u$ が設定された μ_1 より大きければ、 $P-\delta$ 効果により μ_1 が限界づけられることはない。実際に次式が成立している。

 $\mu_{u} > \mu_{1}$ (39) これは μ_{1} 設定に(35)式を採用した為である。以上で図9に示す値は $P-\delta$ 効果を全 て考慮して得られた値であるといえる。

図9において、*α*₁-*N* 関係は鋼構造と鉄筋コンクリート構造において大差ない。 *N*<8の領域では若干鉄筋コンクリート構造の方が必要とされている*α*₁が大きい。こ のことは、鉄筋コンクリート構造の方が塑性化により有効周期が伸び短周期領域で 地震入力が大きくなることに起因する。

鉄筋コンクリート構造では減衰が大きいが、鋼構造に比べて*a_d*が小さく塑性歪エネルギー吸収における効率が低い。この様なことから所要の*α*₁が両者でほぼ等しいものになると考えられる。*α*₁の値はほぼ次式で代表できる。

6. 結語

地震入力レベルの大きな変動に対処する為には建物の損傷度の幅を広く設定する ことが有効であることを明らかにした。建築の主要形式であるラーメン構造をとり 上げ、ラーメン構造が、階数毎に一定の強度を付与することによって、広い地震入 力の変動幅に対して抵抗し得ることを示した。この階数毎の所要強度は鋼構造、鉄 筋コンクリート構造と云った材料種別にも無関係であることも明らかとなった。所 要強度を第1層の降伏せん断力係数で表現すれば次のようになる。

$$N \le 7 \quad \overline{\mathcal{C}} \quad \alpha_1 = 0.35$$

$$N \ge 8 \quad \overline{\mathcal{C}} \quad \alpha_1 = \frac{1.3}{N^{0.66}}$$

$$(41)$$

 $N \leq 7$ はほぼ旧建築基準法の 31m の高さ制限に対応する。上記の α_1 は終局強度設計における画一的な強度規定に対応するものである。上記の強度で設計された建物は V_E で倍以上の地震に対しても耐震性を発揮し得るものである。

一方、免震構造、制振構造は、損傷度の軽減を目標とした構造であり、損傷度の 幅は狭く、それに対応して抵抗できる地震入力レベルの幅も狭く、その点では一般 の耐震構造の方が免震構造や制振構造に優っていると云うことができよう。

参考文献

- 1)秋山 宏:建築物の耐震極限設計、東京大学出版会、1980(第1版) 1987(第2 版)
- 2)秋山 宏:エネルギーの釣合に基づく建築物の耐震設計、技法堂出版、1999
- 3)秋山 宏、北村春幸:エネルギースペクトルと速度応答スペクトルの対応、日本 建築学会構造系論文集 第608 号 pp.37-43、2006、10
- 4)秋山 宏: *P*-δ効果を考慮したせん断型多層骨組の耐震設計、日本建築学会構造 系論文集 第 617 号 pp.87-94、2007、7
- 5)秋山 宏: 非線形性の強い構造物の有効周期、日本建築学会構造系論文集 第 621 号 pp.17-23、2007、11

付録:柔剛混合構造の耐震設計

1. はじめに

現代では通常の建築物に比べてより精度良くその地震時応答を予測できると云う 意味で高性能な構造形式がある。それは一般に柔剛混合構造として認識することが できる。柔剛混合構造の各層は弾性に留まる柔要素と弾塑性挙動する剛要素とで構 成される。地震により構造物に投入されるエネルギーは一旦柔要素に蓄えられ、最 終的には剛要素により塑性歪エネルギーの型で吸収される。剛要素は弾性変形が小 さく弾性剛性が大きい程エネルギー吸収効率が高まる。柔要素と剛要素の名称はこ の弾性剛性の違いに着目して付けられている。柔要素は層の最大変形を抑制する効 果を持つと同時に、特定層への損傷集中を起こしにくくする。また、柔要素の弾性 により、いわゆる $P-\delta$ 効果の負の弾性効果は相殺され、柔剛混合構造には $P-\delta$ 効 果は存在しない。

柔剛混合構造は損傷集中型と損傷分散型に大別される。損傷集中型は特定層を相 対的に弱くして、構造物に投入されたエネルギーをこの特定層で吸収させる構造で あり、免震構造と呼ばれるものがこれに属する。損傷分散型は建物全層にわたって 損傷の均一化をはかった構造であり、一般に制振構造と云われている。免震構造で は最下層に免震層が設けられるのが一般的であり、免震層には建物に投入される全 エネルギーが集中するので柔要素には高い弾性変形能力と鉛直力支持能力が要求さ れる。この両者を備えた積層ゴムアイソレーターの出現によって免震構造は可能に なったと言える。エネルギー吸収要素たる剛要素はダンパーと呼ばれ、免震層に配 置される。上部層が建物として使用される部分で、免震層に比べて剛性が高く、弾 性体として設計される。

制振構造における柔要素は一般に構造骨組そのものによって構成される。即ち、 構造骨組を弾性状態に留めれば柔要素が形成される。剛要素はダンパーを各層にバ ランスよく配置することにより構成される。

免震構造や制振構造では、確定した地震入力の下では構造物の応答は精度良く予 測され、高い性能が保証されるが、柔要素を弾性に留める為に厳しい変形制約条件 が課せられる。この為地震動の不確定性に対処する為には、想定される範囲の可能 な限り大きな地震入力を設計地震動として採用することが必要となってくる。本稿 では地震入力の不確定性を考慮して多段階の入力における柔剛混合構造の応答を求 め、柔剛混合構造に採用すべき入力レベルについて考察する。

2. 柔剛混合構造

図 1 には柔剛混合構造の一つの層の柔要素と剛要素の混合状態を示す。剛要素の 復元力特性は完全弾塑性型とする。柔要素の混合比 r_oを次式で定義する。

$$r_Q = \frac{{}_f Q_m}{{}_s Q_Y} \tag{1}$$

ここで、 $_{f}Q_{m}$:最大層間変形 δ_{m} に対応する柔要素の負担せん断力 $_{g}Q_{v}$:剛要素の降伏せん断力

図1 柔剛混合構造

 $r_{o} = 0$ の場合が通常のラーメン構造骨組である。柔剛混合構造の優位性が明確に現れるのは r_{o} が次の範囲である。

 $r_{O} \ge 1.0$

(2)

(2)式が満たされる範囲において、本文(5)式中の損傷集中指数 n は次の値を採用することができる。

 $n=3 \tag{3}$

剛要素における最大塑性変形 δ_{pm} と累積塑性変形 δ_p の比率は本文(12)式と同様に次式のように書ける。

 $\delta_p = a_d \delta_{pm} \tag{4}$

*a*_dの値は概ね次の範囲にある。

非柔剛混合構造: $2.0 < a_d < 6.0$ 柔剛混合構造 : $6.0 < a_d < 15.0$ (5)

3. 柔剛混合構造の耐震性評価式

地震動のエネルギースペクトルは本文図2に示すものとする。多層骨組の地震時 のエネルギーの釣合式は本文(1)式で与えられる。柔剛混合構造ではエネルギー吸収 の主役は剛要素である。従って、*W_e*,*W_h*のエネルギー吸収全体に占める比率は小さ く、安全側にこれを無視することにする。エネルギーの釣合式は次式に帰着する。

$$W_{p} = \gamma_{1} W_{p1} = \frac{M V_{E}^{2}}{2}$$
(6)

(a) 免震構造

免震構造ではエネルギーは免震層(第1層)に集中し、 $\gamma_1 = 1.0$ である。また、免 震構造の周期は長く、 $V_E = V_{Em}$ とみなせる。 W_{p1} は次式で表せる。

$$W_{p1} = {}_{s} Q_{Y1 s} \delta_{p1} = Mg \alpha_{s1} a_{d s} \delta_{pm1}$$

$$\tag{7}$$

ここで、 $_{s}\delta_{p1}$: 剛要素の累積塑性変形

 $s_s \delta_{pm1}$:剛要素の最大塑性変形 $\alpha_{s1} = \frac{sQ_{Y1}}{Mg}$:剛要素の降伏せん断力係数

免震層の最大層間変形を δ_{m1} とすれば δ_{n1} は次式で近似できる。

$${}_{s}\delta_{pm1} = \delta_{m1} \tag{8}$$

(6)、(7)、(8)式より次式が得られる。

$$\alpha_{s1}a_d\delta_{m1} = \frac{V_{Em}^2}{2g} \tag{9}$$

第1層の降伏せん断力係数 α₁ は次式で与えられる。

$$\alpha_{1} = \alpha_{s1} + \alpha_{f1} = \alpha_{s1} (1 + r_{Q})$$
(10)

ここで、
$$\alpha_{f1} = rac{f Q_m}{Mg}$$
:柔要素のせん断力係数

(b) 制振構造

W_nは次式で表せる。

$$W_p = \gamma_1 W_{p1} \tag{11}$$

*W*_{*p*1} は次式で表せる。

$$W_{p1} = {}_{s} Q_{Y1 s} \delta_{p1} = Mg \alpha_{s1} a_d \left(\delta_{m1} - {}_{s} \delta_{Y1} \right)$$
(12)

 γ_1 は本文(10)式で与えられる。エネルギーの釣合式は次式に帰着する。

$$\alpha_{s1}a_d(\delta_{m1}-s\delta_{Y1})\gamma_1 = \frac{V_E^2}{2g}$$
(13)

本文図 2 に示されるようにエネルギースペクトルは 2 線分からなる。(13)式を 2 線分に適用すれば、 α_{s1} の 2 つの値 $_1\alpha_{s1}$, $_2\alpha_{s1}$ が求まる。真の α_{s1} は本文(20)式と同様 に次式で与えられる。

$$\alpha_{s1} = Min\{1\alpha_{s1}, 2\alpha_{s1}\}$$
(14)

エネルギースペクトルに適用すべき周期は本文 2.4 に述べる有効周期である。制 振構造に適用すべき有効周期を以下に示す。 剛要素が単独に存在する場合の周期T。は次式で与えられる。

$$T_{s} = 2\pi \sqrt{\frac{{}_{s}\delta_{Y1}\kappa_{1}}{\alpha_{s1}g}}$$
(15)

柔要素が単独に存在する場合の周期*T_f*は次式で与えられる。

$$T_f = 2\pi \sqrt{\frac{\delta_{m1}\kappa_1}{\alpha_{f1}g}}$$
(16)

剛要素単独構造の最長周期_"T_、は次式で与えられる。

$$_{m}T_{s} = T_{s}\left(1 + \frac{\mu_{m}}{8}\right) \tag{17}$$

 $\exists \exists \forall c, \mu_m = (\delta_{m1} - \delta_{Y1}) / \delta_{Y1}$

従って、剛要素単独構造の有効周期 $_{e}T_{s}$ は次式で表せる。

$${}_{e}T_{s} = \frac{T_{s} + {}_{m}T_{s}}{2} = 2\pi \sqrt{\frac{{}_{s}\delta_{Y1}\kappa_{1}}{\alpha_{s1}g}} \left(1 + \frac{\mu_{m}}{16}\right)$$
(18)

剛要素と柔要素の並列系の周期として、系の有効周期_eTは次式により求められる。

$$\frac{1}{T_e^2} = \frac{1}{T_f^2} + \frac{1}{{_eT_s^2}}$$
(19)

従って、次式が得られる。

$${}_{e}T = 2\pi \sqrt{\frac{\kappa_{1}}{\frac{\alpha_{f1}g}{f \,\delta_{Y}} + \frac{\alpha_{s1}g}{s \,\delta_{Y1} \left(1 + \frac{\mu_{m}}{16}\right)^{2}}}$$
(20)

$$\frac{{}_{e}T}{T_{f}} = \sqrt{\frac{1}{1 + \frac{\delta_{m1}\alpha_{s1}}{s\delta_{Y1}\alpha_{f1}\left(1 + \frac{\mu_{m}}{16}\right)^{2}}}$$
(21)

(13)式をエネルギースペクトルの各線分に適用する。 $T_e \leq T_G$ の場合

$$\alpha_{s1}a_d \left(\delta_{m1} - {}_s \delta_{Y1}\right) \gamma_1 = \frac{V_{Em}^2 T_e^2}{T_G^2} = \frac{V_{Em}^2}{T_G^2} T_f^2 \left(\frac{T_e}{T_f}\right)^2$$
(22)

(22)式のT_fに(16)式を代入すれば次式が得られる。

$${}_{1}\alpha_{s1} = \frac{2\pi V_{Em}}{gT_G} \sqrt{\frac{\delta_{m1}\kappa_1}{2a_d(\delta_{m1} - s\delta_{Y1})\gamma_1}} \cdot \frac{T_e}{T_f}$$
(23)

 $T_e > T_G$ の場合

$$\alpha_s a_d \left(\delta_{m1} - s \delta_{Y1}\right) \gamma_1 = \frac{V_{Em}^2}{2g}$$
(24)

故に

$${}_{2}\alpha_{s1} = \frac{V_{Em}^{2}}{2ga_{d}(\delta_{m1} - {}_{s}\delta_{Y1})\gamma_{1}}$$
(25)

4. 例題

エネルギースペクトルとして本文図 6 に示すものを適用する。 a_d , r_Q の値として次のものを採用する。

(27)

(a) 免震構造

 δ_{m1} として次の値を設定する。

$$\delta_{m1} = 40cm$$

(9)式より得られた $V_{Em} - \alpha_1$ 関係を図 2 に示す。

(b) 制振構造

損傷集中指数としては(3)式の値を採用する。 δ_{m1} としては次の値を採用する。

 $\delta_{m1} = 2.5 cm$, 4.5 cm

(28)

(23)、(25)、(14)式より得られた N – α₁関係を図 3 に示す。

柔剛混合構造では δ_{m1} に関する制約条件が優先される。この為に地震入力の変動に 対して所要強度 α_1 が大幅に変動することになる。

5. 柔剛混合構造に採用すべき入力レベル

本文で示したように、通常の建物で非柔剛混合構造では入力レベルが高まれば、 応答変形が大きくなる。従って、変形能力(終局塑性変形)に余裕を見込むことに より地震入力のばらつきに対処できる。

一方、柔剛混合構造では設計における基本的制約条件は最大変形であり、地震入 カレベルが高まれば、図2、図3に示されるように所要強度は大きくなる。従って、 採用すべき地震入力レベルは、地震入力のばらつきの上限に対応するものでなけれ ばならない。例題で用いた地震入力を対象とすれば、柔剛混合構造に採用すべき設 計地震入力のレベルは本文図6中の 程度のものとなろう。図3中には *V_{Em}* = 300 *cm/s* に対応する免震構造に要求される*α*₁のレベルを*N*軸に平行な線分で 示す。また、通常の多層骨組の本文(41)式で示される所要強度*α*₁を破線で示す。 レベルの地震入力(*V_{Em}* = 300 *cm/s*)に対する柔剛混合構造の所要強度レベルは非柔 剛混合構造と同等かそれより高い。柔剛混合構造の優位性をどこに求めるべきか。 それは所要強度の低さではなく構造性能の高さである。非柔剛混合構造では地震入 力レベルが高まれば損傷度も高まる。柔剛混合構造では地震入力のレベルに拘らず 損傷を免れることが可能となる。

図 3 $N - \alpha_1$ 関係

5. 結語

柔剛混合構造の地震応答を求め、非柔剛混合構造の地震応答との対比において下 記の結論を得た。

1) 非柔剛混合構造では地震入力レベルが高まれば、変形応答が大きくなる。従っ て、変形能力に余裕を見込むことにより地震入力のばらつきに対処できる。一方、 柔剛混合構造では基本的制約条件は最大変形であり、地震入力レベルが高まれば所 要強度は大きくなる。従って、採用すべき地震入力のレベルは地震入力のばらつき の上限に対応するものでなければならない。

2) 非柔剛混合構造に比べて柔剛混合構造の設計用地震入力レベルを高める必要がある。一般に非柔剛混合構造に対する地震入力レベルを $_{o}V_{E}$ とすれば、柔剛混合構造に対する地震入力のレベル $_{sf}V_{E}$ は次式のように書ける。

$$_{sf}V_E = m_{so}V_E \tag{29}$$

ここで、 m_s:柔剛混合構造の耐震余裕

m_s = 2.0 程度の値を採用すれば、柔剛混合構造の所要強度は非柔剛混合構造と同等 ないしそれ以上となる。

3) 従来の柔剛混合構造では*m*_sのレベルは1.2 程度であった。即ち、柔剛混合構造 の長所は所要強度を非柔剛混合構造より下げ得ることに求められていた。地震動の ばらつきを考慮すると、*m*_sの値として次の値を採用すべきである。

 $m_s \ge 1.5$

(30)

4) 柔剛混合構造の長所はその耐震性能の高さ(無損傷)に求めるべきであって、 所要強度の低減に求めるべきではない。

1. 基本式

(a) 力の釣合式

(b) エネルギーの釣合式

(1) × *d* y、地震の継続時間で積分

3

4

無減衰弾性系へのエネルギー入力

 $M\ddot{y} + ky = -M\ddot{z}_0$

ここで、 *k*∶バネ定数

$$\dot{y}(t) = -\int_0^t \ddot{z}_0(\tau) \cos \omega_0(t-\tau) d\tau$$

ここで、 $\omega = \sqrt{\frac{k}{M}}$: 固有円振動数 $E = \frac{M\dot{y}_{max}^2}{2}$ $\dot{y} = \left(-\int_0^{t_0} \ddot{z}_0(\tau)\cos\omega_0 \tau d\tau\right)\cos\omega_0 t + \left(-\int_0^{t_0} \ddot{z}_0(\tau)\sin\omega_0 \tau d\tau\right)\sin\omega_0 t$ $\ddot{y}_{max} = \sqrt{a^2 + b^2}$ ここで、 $a = \int_0^{t_0} \ddot{z}_0(\tau)\cos\omega_0 \tau dt$, $b = \int_0^{t_0} \ddot{z}_0(\tau)\sin\omega_0 \tau dt$

6

10

エネルギースペクトルの形態

 $T_0 < T_G$ (短周期領域)で

$$V_E = aT = \frac{V_{Em}}{T_G}T$$

 $T_0 > T_G$ (長周期領域)で

$$V_E = V_{Em}$$
ここで、 T_G :周期領域を限界づける周期
(限界周期)

V_{Em}:エネルギースペクトルの最大値

$$\alpha_1 = \frac{Q_{Y1}}{Mg}$$

最適降伏せん断力係数分布 $\overline{\alpha}_i$

 $\eta_i = const.$ とする降伏せん断力係数

14

基本損傷分布則

$$\frac{W_{pi}}{W_p} = \frac{s_i p_i^{-n}}{\sum_{j=1}^N s_j p_j^{-n}} = \frac{1}{\gamma_i}$$

$$\mathbf{ZZC}, \quad p_j = \frac{\alpha_j}{\alpha_1 \overline{\alpha}_j}$$

- *n* :損傷集中指数
- γ_i : 損傷分散係数

$$s_i = \left(\sum_{j=i}^N \frac{m_j}{M}\right)^2 \alpha_i^2 \left(\frac{k_1}{k_i}\right)$$

ここで、 ${}_{f}Q_{m}$:最大層間変形 δ_{m} に対応する柔要素の負担せん断力 ${}_{s}Q_{Y}$:剛要素の降伏せん断力

構造形式

非柔剛混合構造	•	通常の骨組
損傷集中型柔剛混合構造	•	免震構造
損傷分散型柔剛混合構造	•	制振構造

18