xR技術を駆使した 大規模原子力データの可視化

河村拓馬

日本原子力研究開発機構システム計算科学センター

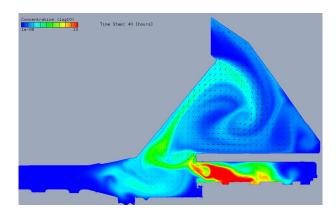
第35回CCSEワークショップ

オンライン開催

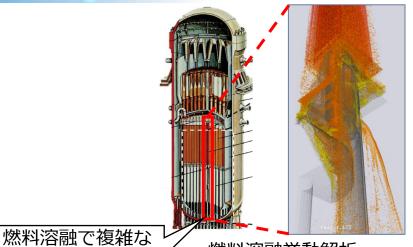
2024年2月2日

JAEAにおける可視化技術の活用

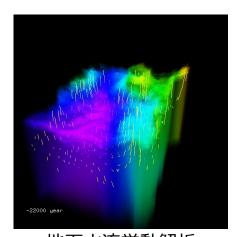
耐震データで観察

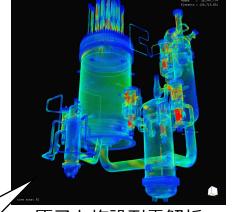

の難しい応力集中

の領域を発見

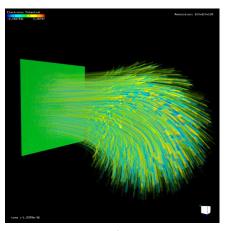


- 可視化とは?
 - 色と不透明度で物理値を表示
 - 視点変更で3次元を観察
 - 数秒オーダーの対話処理
- 粒子ベースの可視化技術
 Particle-Based Volume Rendering,
 PBVR
 - 対話処理可能なアプリケーション


1F港湾汚染物質拡散解析 (CCSE/福島研究開発部門)


[´] 燃料溶融挙動解析 (原子力科学研究部門)

多変量データから

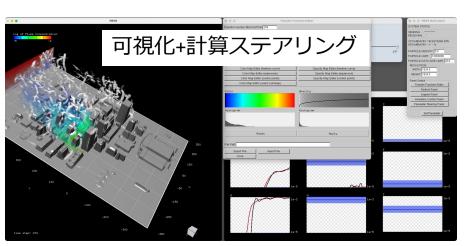

溶融挙動を確認

地下水流挙動解析 (核燃料・バックエンド研究開発部門)

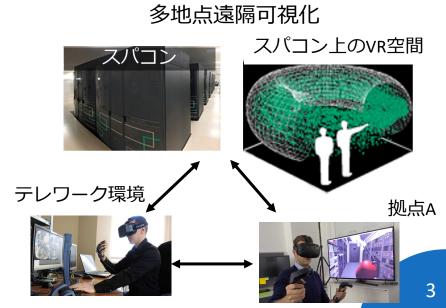
原子力施設耐震解析 (安全研究・防災支援部門)

核融合プラズマ流体解析 (QST、旧核融合研究開発部門)

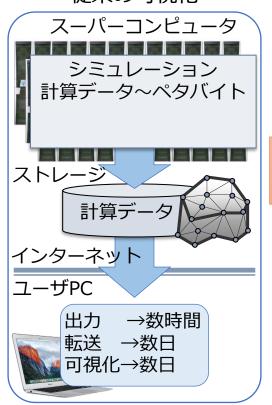
研究目的



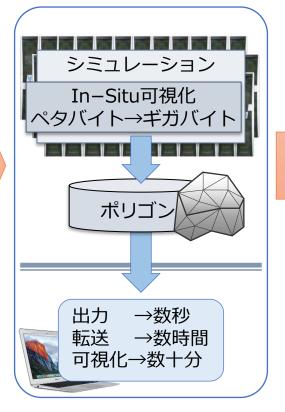
- 研究開発のDXによりxR技術を活用した可視化のニーズが増大
- 多数の専門家が関わる原子力分野の大規模シミュレーションを可視化する技術
 - 1. 解析↔可視化のループを効率化
 - 2. VRによるリアリティの高い可視化
 - 3. 複数拠点の科学者で連携


- 1. 実時間可視化+計算ステアリング
- 2. ヘッドマウントディスプレイ(HMD)で遠隔VR
- 3. 多地点遠隔可視化

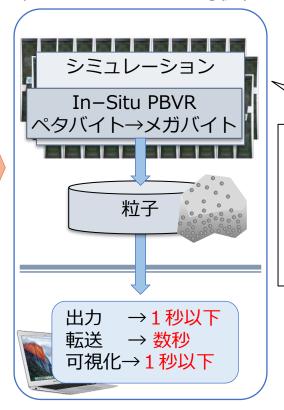
パラメータや境界条件を 変更しながら可視化



大規模可視化の課題と解決策



従来の可視化


- 計算データを ユーザPCへ転送
- 大規模データへの 適用が困難

従来In-Situ可視化

- ポリゴンに変換
 - 計算データの 全領域に生成
- 可視化処理コストが高い

粒子ベースIn-Situ可視化

In-Situ PBVRを活用し解決

- 1. In-Situ計算ステアリング
- 2. In-Situ遠隔VR可視化
- 3. 多地点遠隔可視化

- 粒子に変換
 - 可視化に必要な部分に 選択的に生成
- 可視化処理コストが低い

目次

- O. PBVRによる基盤技術
 - a. PBVRによる大規模データの可視化処理
 - b. In-Situ可視化フレームワークIn-Situ PBVR
- 1. In-Situ計算ステアリング
- 2. In-Situ遠隔VR可視化
- 3. 多地点遠隔可視化

目次

- O. PBVRによる基盤技術
 - a. PBVRによる大規模データの可視化処理
 - b. In-Situ可視化フレームワークIn-Situ PBVR
- 1. In-Situ計算ステアリング
- 2. In-Situ遠隔VR可視化
- 3. 多地点遠隔可視化

PBVRによる大規模データの可視化処理

従来のポリゴンベース可視化

- ポリゴンに変換(TB)
 - 元データの全領域にポリゴンを生成
- スパコン上の並列処理で順序計算
- 視点変更に再計算が必要

計算データーポリゴン ポリゴン 牛成 順序計算 ポリゴン 転送

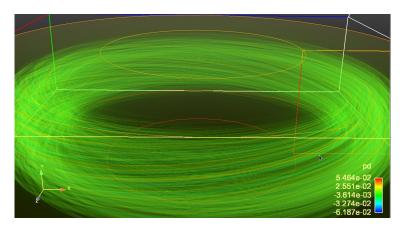
粒子ベースボリュームレンダリング(PBVR)

- モンテカルロ法による粒子生成(MB)
 - 不透明度から画素に映る粒子のみ生成
- PC上で描画時に順序計算
- 再計算無しに視点変更が可能

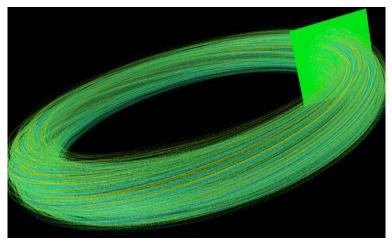
課題 大規模データでは可視化処理 速度が低下

- ▶ 膨大なポリゴンは転送困難
- 順序計算のために演算器間で多量 の通信が発生
- 視点変更が困難

粒子データが圧縮されることに 着目し遠隔可視化モデルを構築


- 圧縮された粒子データをユーザPC へ転送
- ▶ 順序計算を伴う描画処理はユーザ PC上で処理
- 視点変更が容易

PBVRによる大規模データの可視化処理



事例 約2億格子のプラズマ乱流データを対象に 汎用可視化ツールEnSightと比較

EnSight

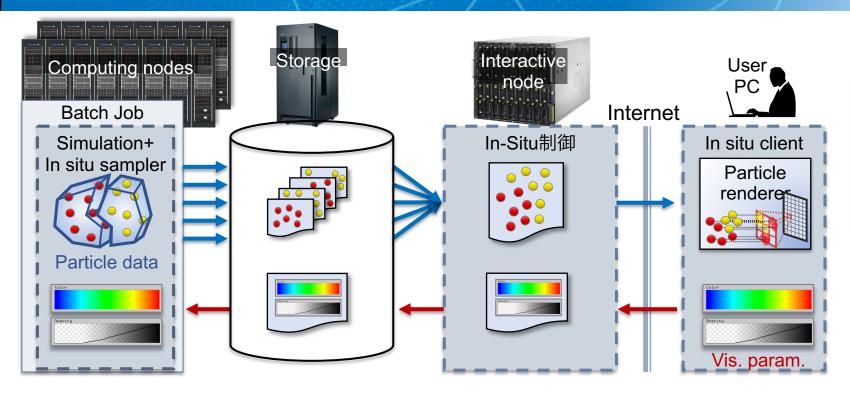
PBVR

実験環境							
Client	CPU	Xeon E5					
	GPU	Quadro K5000					
Server	Intel Xeon E5 (48 cores)						
Network	3.4 [MB/sec]						

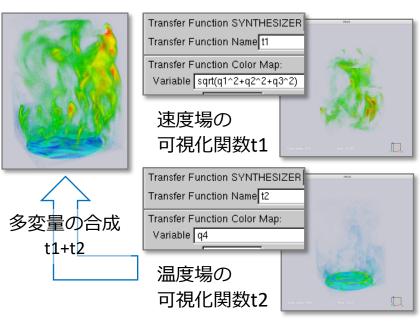
元データ	粒子データ
サイズ	サイズ
~1 TB	~260 MB

	PBVR	Ensight	
粒子生成[sec/step]	52	-	
転送[sec/step]	75	-	
合計 [sec/step]	128	3873	
描画速度[fps]	60	2.7	

- 小さなデータサイズ
 - ・大規模な元データの数千分の一
- 超並列処理に適したモンテカルロ法
 - EnSightの22倍以上高速
- 秒間60フレームで対話的な視点変更


結果

- メガバイト規模の粒子を用いて ポリゴンよりも高速なデータ転送
- スパコン上で実時間の可視化処理
 を実現
- 実時間の視点変更を実現


In-Situ可視化フレームワークIn-Situ PBVR

多変量可視化の設計

PBVRによる並列可視化

- 並列処理コストが小さい →1秒以下
- 可視化データが小さい →数10MB
- データ転送コストが小さい →数秒

優位性

米国DOEのIn-Situ可視化アプリより 数十倍高速な実時間処理

In-Situ制御

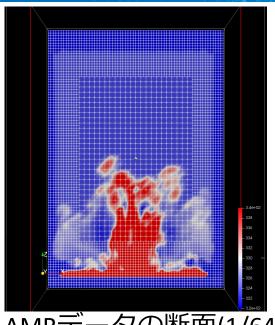
パラメータファイルを介して非同期 に可視化処理を制御する技術

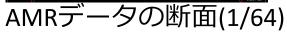
優位性

シミュレーションを阻害せずに可視 化パラメータを設計する対話処理

多変量データ可視化

● 多変量データと色・不透明度の関係を 代数式で設計する手法


優位性


多変量、多次元データに対する専門家のイメージを形にする可視化

適合格子細分化(AMR)シミュレーションへの適用



PBVR

ParaView

HPE SGI8600 (1 node spec.)

CPU: 2x Intel Xeon Gold 384GB

GPU: 4x NVIDIA Tesla V100, 32GB

- デブリ空冷模擬実験
- AMR 格子 (約3000万格子)
- 2 nodes, 8 GPUs
- 回線速度 3MB/s

In-Situ PBVR

Particle size: 180[MB]

Particle gen.: 17.8 [s/step]

Transfer : 60.1 [s/step]

Rendering : 0.01 [s/step]

(91 Frame/s)

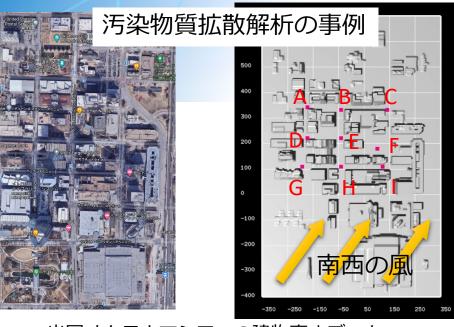
ParaView Catalyst

Rendering: 388 [s/step]

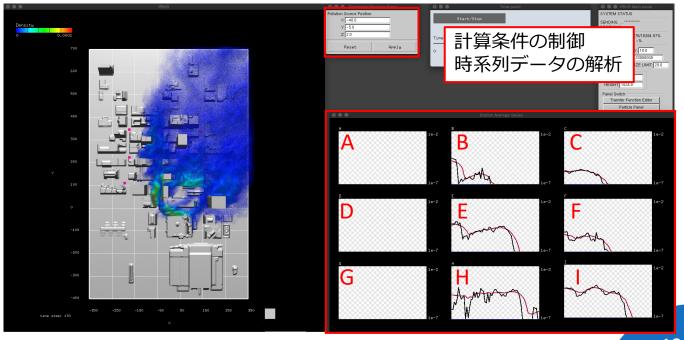
(0.002 Frame/s)

- 全体性能は~5倍、
- 視点変更速度は~3万9千
- 実時間の対話的操作が可能

目次

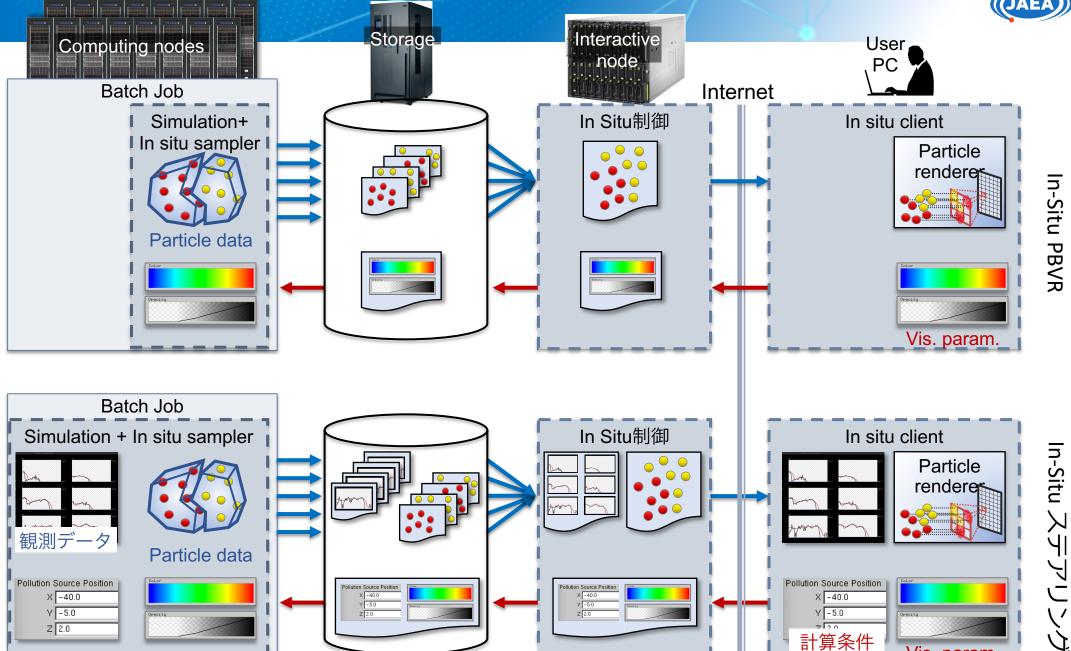


- O. PBVRによる基盤技術
 - a. PBVRによる大規模データの可視化処理
 - b. In-Situ可視化フレームワークIn-Situ PBVR
- 1. In-Situ計算ステアリング
- 2. In-Situ遠隔VR可視化
- 3. 多地点遠隔可視化

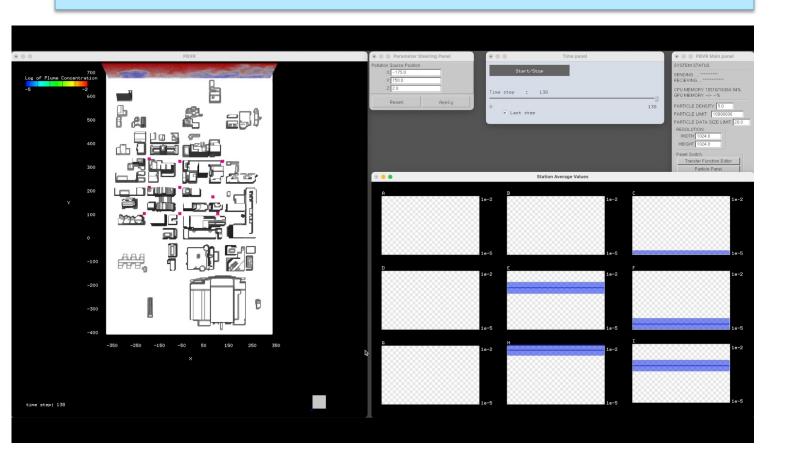

In-Situ計算ステアリング

- シミュレーションの計算条件を対話的に制御
 - 計算実行中に計算パラメータや境界条件を変更 しながら可視化
 - シミュレーション側に計算条件入力用の機能追加 が必要

米国オクラホマシティの建物高さデータ


- 時系列データの統計解析機能
 - 計算空間に観測点を設定
 - 観測点上の時系列データを情報可視化
 - 可視化と同時にデータ取得するためシ ミュレーション側の変更無し

Vis. param.


In-Situ計算ステアリング

実時間汚染物質拡散解析における事例

- 従来手法による計算条件の制御→~1日/フィードバック
 - **~1TB/shotの観測データ**を生成
 - 従来アプリで可視化し、計算条件を変更し、再実行
- In-Situ PBVRを活用した計算条件の制御→実時間フィードバック

HPE SGI8600 (1 node spec.)

CPU: 2x Intel Xeon Gold (3.0GHz, 24

cores), 384GB RAM

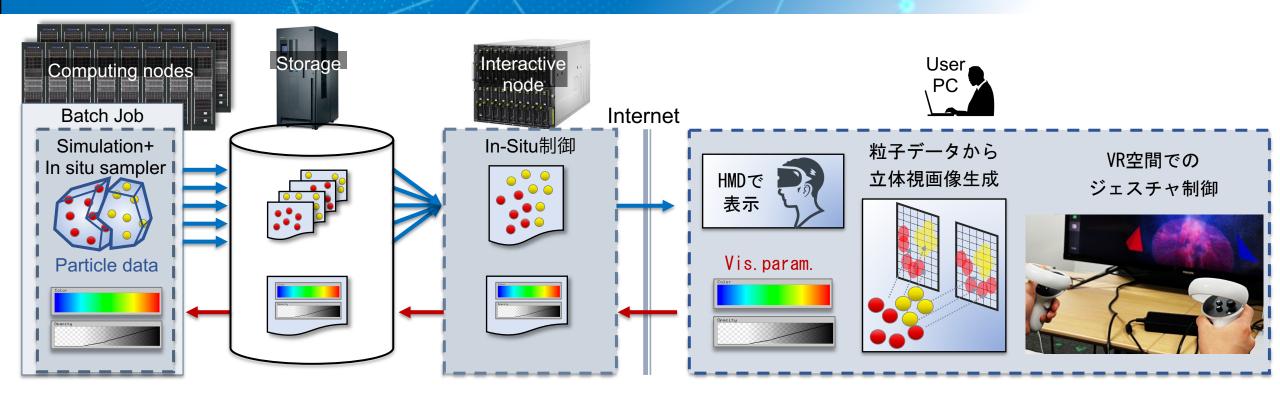
GPU: 4x NVIDIA Tesla V100, 32GB

実験条件

- 4Km²、4m解像度
- 3階層のAMR格子
- 8nodes, 32GPUs

1ステップの処理性能

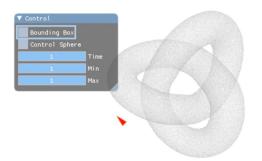
- In-Situ PBVR: 1秒未満
- ParaView: 数百秒
- 総格子数~1.3x10⁸ →In-Situ PBVRだからこそ可能


オクラホマシティ汚染物質拡散模擬実験

- 南西の風
- 市内に9つの観測点A~I
- 各点の汚染物質観測値を青で表示
- 観測値を再現する汚染源を探索
- →逆問題に対するhuman-in-the-loop解析

In-Situ遠隔VR可視化

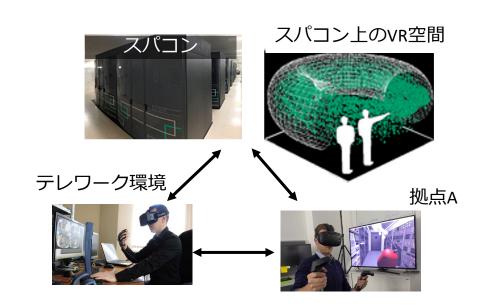
立体視画像生成

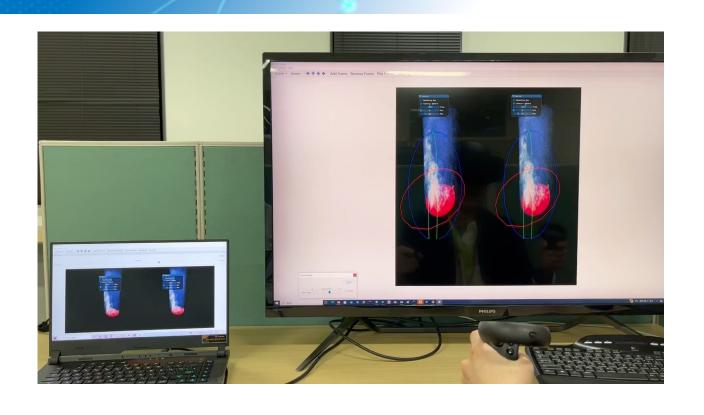

- In-Situ PBVRで使用している可視化 ライブラリKVS(C++)を両眼用に拡張
- HMDのSDKを利用

VRコントローラーによるジェスチャ制御

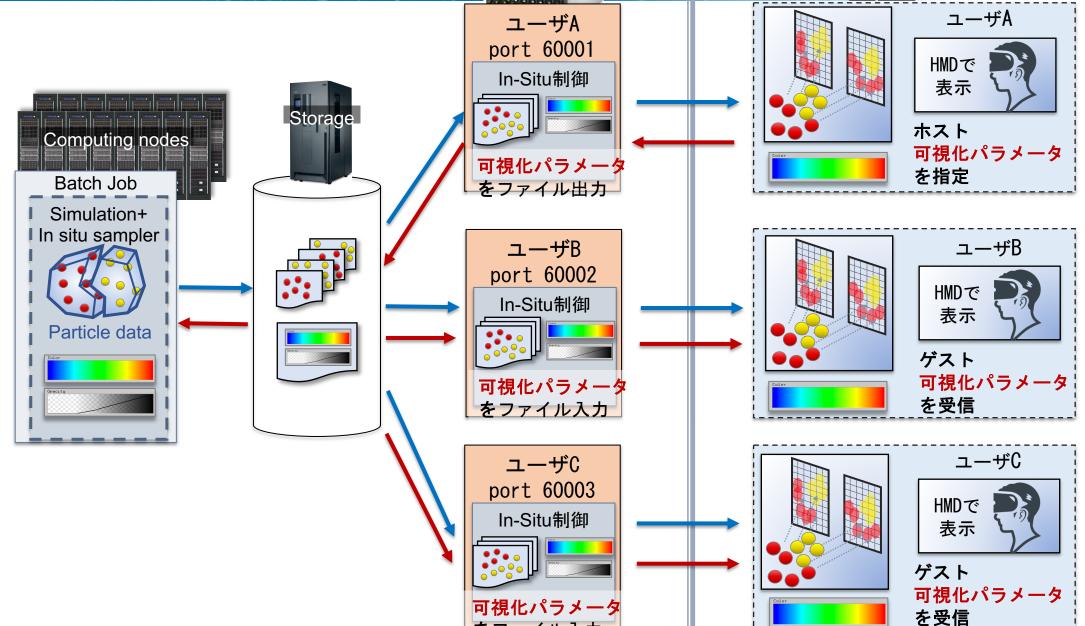
 オブジェクトの回転・拡大/縮小・平行移動を VR空間の手で動かす感覚で操作

タイムステップ操作パネルをVR空間に移植

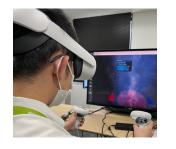

• 伝達関数の移植はこれからの課題

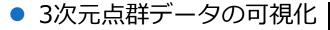


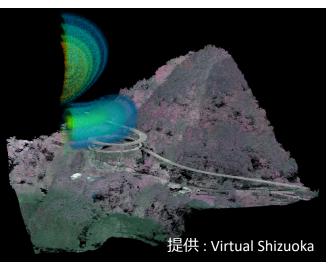
多地点遠隔可視化

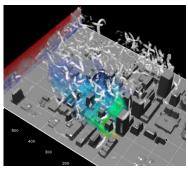

- ●複数ユーザが可視化を共有
- ●可視化パラメータを変更するため 解析の主となる「ホスト」と「ゲスト」を設定
- ●SGI8600上の熱対流計算の可視化を2台のPCで共有
- ●左のPCが「ゲスト」、右のPCが「ホスト」
- ●着目点を指定する緑色のグリフの位置をホストが操作し、ゲストが共有する

多地点遠隔可視化


をファイル入力

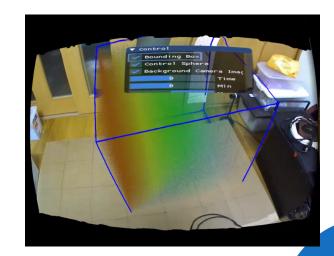

可視化ソフトウェアPBVRの機能


- 遠隔可視化モードの切り替え
 - クラサバモード:ストレージ上のデータを可視化
 - In-Situモード:スパコンの計算と結合
- 表示デバイスの切り替え
 - ディスプレイ
 - HMD



- LAS形式に対応
- 既存の可視化と合成表示

1/4水素ボリューム 256x128x128 静岡県熱海市の航空計測データ ~14,551,000点



- 多変量可視化機能
 - 代数式で多変量向けの伝達関数を設計
 - ボリュームレンダリング、 等値面、断面等
 - 物理量の合成を定義

公開前の機能

- 多地点連携可視化
 - 複数拠点で可視化を共有
- MR(Mixed Reality)機能
 - PBVRによる可視化と現実 の風景を合成

まとめ

- 原子力分野の大規模シミュレーションではxR技術を活用した可視化のニーズが増大
- 圧縮された粒子データにより大規模シミュレーションの 実時間可視化が可能なIn-Situ PBVR ← 活用
 - In-Situ可視化・計算ステアリング
 - スパコン上のシミュレーションを実時間で可視化・解析し、計算条件に フィードバックすることで直感的なパラメータ最適化を実現
 - 多地点遠隔VR可視化
 - 遠隔地の専門家とHMD上のVR空間を共有し、上記解析をさらに効率化
- 今後の展望
 - VR空間における情報可視化機能や可視化パラメータGUIの開発
 - 点群データ、カメラ画像等の現実空間データとシミュレーションによる仮想空間データを融合したデジタルツインのxR可視化

オープンソースのIn-Situ PBVR

https://ccse.jaea.go.jp/software/In-Situ_PBVR/https://github.com/CCSEPBVR/CS-IS-PBVR

Ga	国立研究開発法人日:	本原子力研究開発機構		ENGLISH 採用情報 アクセス・お問合せ 機構HP			
ESE.		算科学センター onal Science & e-Systems	(JAEA))				
ホーム	センターについて	スーパーコンピュータ	研究・業務紹介	研究成果	公開ソフトウェア	会議情報	
<u>ーム</u> > <u>公開ソフトウェア</u> >	In-Situ_PBVR						
公開ソフトウェア PBVR		n-Situ可視化フ n-Situ Particl					
In-Situ PBVR	> \.	.,			9/		
VRKVS	E3						
PARCEL	IS-F	PBVR v2.2 (2023/1	1/10)				
EigenK		EARC DRIVE 2 2+846.h.	.n_ P리바까보 * Fw:	7≓_ L 78/+00/10 A/D DI	BVRがテクスチャ付きポリゴン	. ≓ _ & (EDV /2D0E)	
QPBLAS	- AKANA				/IS/VR-PBVRのクライアント		
QPBLAS-GPU		ドが統合されました。					
QPEigen K	<u>></u> y−2	スコードはgithubから公開し	ンています。				
PIMD		s://github.com/CCSEPB\ ease_is_pbvr_v2.2.0プラ:					
		'ナリ <u>'ナリ一覧</u>					
		ニュアル					
	日本	語版	download				
	英語	斯板	download				
	IS-F	PBVR v2.1 (2023/0	3/27)				
	また、ソース	MacのARMアーキテクチ スコードはgithubから公開り	ャに対応しました。 _ン ています。	プデートではIS-PBVRの非	構造格子で処理可能な要素タイ	イプが増えました。	
		https://github.com/CCSEPBVR/CS-IS-PBVR のrelease_is_pbvr_v2.1.0ブランチ					
	9	ウンロード					
		パイナリ					
	154	ナリ一覧					
	₹=	ュアル					
	m+	語版					
	D4	間収	download				